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I. INTRODUCTION

Let <Po(x), CPl(X), ... , <Pn(x) be arbitrary, but linearly independent functions,
and lex) a function given in analytical or tabular form. The linear inter­
polation problem consists in determining coefficients Yo' y, ..... y" such that
the function

n

satisfies the equalities

<P(x) = I y,<P,(x)
i=O

( 1.1)

1 =. 0, L.... /1, ( 1.2)

where the given abcissae x, are the so-called interpolation points.
Assume that these points lie in a finite interval [a, b], and that f(x),

<Po(x)•.... <Pn(x) are defined on that interval. It is well known [I] that the linear
interpolation problem has a unique solution on [a, b] if and only if the system
{<Po, <PI ,...• CPr.} satisfies the Haar condition on [a, b), i.e., det(<p;(xi» eF 0 for
every cloice of 11 I points X o , Xl •.••• x n from [a, b). Equivalent with this
condition is the statement that every function of the form (1.1) has at most 11

zeros in that interval [2].
The main examples of1inear interpolation types allowing a unique solution

are

(i) polynomial interpolation. where

<Pi(X) = xi, i = O. I, .... n;
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a, b arbitrary; (1.3.a)
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(ii) exponential interpolation [3], where in its most general fonn-

0, I, ... , //; ii, b and the !3, arbitrary; (1.3.b)

(iii) trigonometric interpolation [4], where

cos ix, r?:') x) sin ix. I. 2, .... 1\:
II 2/V:

b iI 27T.

The more general trigonometric system
(i .3.c)

sin !3,x, 0, 1, .... iV, // 2iV I,

( l.3.d)

( 1.3.e)1.2 .... ,//: b a
cos ix.

does not always satisfy the Haar condition. Other trigonometric Haar systems
are [5]

<Pi(X) .'~' sin ix.

<Po(x) I. <p,(x)

In interpolation theory it is important to know the remainder Rnl \(x)

fix) .... QJ(x). If the functions f(x), <Po(.\') ..... <PII(X) are 17 I times differen-
tiable on [a, b], then Petersson's remainder formula holds [6]

( 1.4)

where x, ~ E [a, b]; the differential operator L,., 1 is defined b)

L II 'j[g(x)]

<p,,( .\')
g(x) I.' I,V(.r),

gill II(X) i

( 1.5)

where W(x) is the Wronskian

I

<Po('\')
11/(x) '~"

<p\;,)(x)

<PII(X) I
A-IIII(X) ,
'1-"11

(1.6)

further h(x) is the solution of the differential equation

LII+I[h(x)] I. Il(x,) = 0, i ~~ 0, 1, .... //. ( 1.7)

We call optimal interpolation points the zeros Xo ' Xl' .... X" of Il(x) which
are so chosen that this function is the minimax approximation to the null
function on [a, b]. The problem of finding optimal interpolation points is
solved for the case of polynomial interpolation (1.3.a). Then clearly
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LU+1[f(t)]- f!"+1)(t), and L" 11[h(x)] hili 1)(x)
i = O. 1, ... ,11. The solution of the latter equation is

I. with h(x i ) -, 0,

h(x)
1\'(x)

-(II-i-iT! '
"

1\ (x) = 11 (X\/).
I II

(Un

If a - I, hI, the optimal x, are the zeros of the polynomial
w(x) 2-" T" 'I(X), where TI/l(x) is the Chebyshev polynomial of the first
kind. The zeros Xi ' extremal points .x; and deviation d of \r(x) are then given
by [7]

Xi == . cos(2i -+ 1)77/(211 2), i = O. I..... 11:

Xi ~'- cos i77/(1I -! I).

The linear transformations

i==O, 1, .... 11

( 1.9)

I: d ~'" (1.10)

x == [(h - a)/2]1I+ (hi a)/2: 11 = (2x- h - a)/(h -, a):

a x h: -- I II ( I. I I)

map the intervals [a. b] and [- I, -I- I] onto each other. Since the linear space
spanned by the system (I .3.a) is invariant with respect to the first transfor­
mation (I. I I). optimal interpolation points are also known for an arbitrary
interval [a, h].

In the present paper Petersson's remainder formula will be used to develop
a similar theory of optimal interpolation for some types of exponential and
trigonometric interpolation. Results will be compared with the polynomial
case.

2. REMAI1\DER FORMULAS

We consider the systems (1.3.b) and (1.3.d) and assume firstly that all (3;
differ from zero. (The (3; must be such that the system (I .3.d) satisfies the
Haar condition.) We write the differential equation (1.7) in the following
explicit form:

n+l

I c".(x) 17 (1<) (x) = I,
}.-. n

i~=O,I, ... ,II. (2.1 )

By virtue of(1.5), (1.6) we find for exponential interpolation (l.3.b) that

n

Co(x) = (_1)111 n(3,.
i=O



360 VAN DE VEL

This is a constant and hence a particular solution of (2.1) is (-I J" 1/((3ofJ1... (3n)'
Since every function of the form L:;'~o YieBi"' is a solution of the homogeneous
equation (2.1), the total solution of this equation is

n

hex) = I YieBiX -+ (--1)"+1/((30(31 ... (3,,),
I~O

(2.2)

where the constants Yi are fixed by the conditions h(xi) = O. .i = o. 1..... 11.

After a more elaborate calculation we find for trigonometric interpolation
( 1.3.d) that

h

co(x) n(3/;
i \I

th e solution of (2.1), consequently. is

hex)
N

I (Yi cos (3i X 0i sin (3iX) + ((30(31 ... (3N)
i=-=O

(2.3)

where the Yi , 0i are such that h(xJ 0, .i 0, 1•...• 1/.

Secondly, we assume that (30 = 0. Then it follows from (1.5) and (1.6) that
co(x) ::cc O. Furthermore, for the exponential case.

"
c](x) ~ (-I)" n (3i.

l=-]

and, hence,

hex) Yo
"I Yie"i'

i ~,,-1

( I)"
- ------- -- X.
(3](32 ... (3/1

(2.4)

For the trigonometric case we now have CP1 0; therefore, we redefine the
system (l.3.d) as

I, CP2i-'(X) =C. cos f3;x, CP2i(X) ~-" sin f3iX.

i = 1.2..... N: 17 == 2N. (2.5)

Then Eqs. (1.5), (1.6), and (2.1) yield

tv

(\(x) == n 13;2;
i-=1

consequently,

N

hex) == Yoi-- I (Yi cos f3iX + 0i sin f3i X) T (131(32 ... f3N)2 X . (2.6)
i=l
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In practice the num bers f3, are chosen as follows.

(i) Exponential case. We take

f30 = 0; f32i-l = i, f32i --i, i = L 2, ... , N; /I c= 2N. (2.7)

Then the function h(x). given by (2.4), reduces to

N

I ( ) . "(' "i', -"")I,. x = Yo -~- L Y2i··IC ~ Y2iC

1:---1

(2.8)

The determination of the coefficients Yi from the equations /i,JxJ ~c 0
j = 0, 1, ... , n, is a problem of exponential interpolation of the function
g(x) (- 1)v+lx /(N!)2, the solution hl(x) of which is known to be [6]

~ Ek(x) (' , )
L E ( ) g .X!' ,

/' .. 0 ~k "k •

hence,

(-I)N II

hef,,) = (N!)2-- We(X),

We can generalize the choice (2.7) to

O.2N , .\ _ .\.

E,,(x) = n sinh (~~--,,-);
i / I: ~

() ~ Er,/x) .
We X = L y----) .X/, - X.

k~O I;(XI; .
(2.9)

f30 = 0; f32i-1 = if3, f32i -if3, i=I,2, .... N; f3 O. (2.10)

The remainder formula (2.9) is modified accordingly

2N Ek(x)
llAx) = I, E-(',) XI; _. x,

1.. 0 I.. ·X I"

(2.11)

(ii) Trigonometric case. We take the system (l.3.c), i.e.,

f3o=O; f3i=·i, i=I,2, .... N; n=2N; b-a h. (2.12)

It can be shown along similar lines as in the previous case that the remainder
becomes

(2.13)

Again we can generalize (2.12) to

f3o= 0; f3, = if3, i = I. 2, ... , N; f3 > 0; f3(b - a) 27T. (2.14)
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We then obtain for the remainder (2.6)

.,\, S'
~ .. '':.~\) \.
L C' ( ).;,

I, " "~I, X;,

(2.15)

S;,(x) Y{ sin [{j (.\ 2 Xi l]·
I 1<

Hamming [II, pp. no 283] gives a remainder formula for trigonometric
interpolation of the type (1.3.c) which is valid for equidistant nodes. It can be
shown that the application of Petersson's formula to systems of the type (1.3.e)
does not lead to analogous simple expressions for the remainder. However,
an expression for the remainder of generalized interpolation including the
type (1.3.e) (and its hyperbolic analog) has been given by Newbery [12]. The
quantity corresponding to our h(x) there is

rP,,(Y) 1\(\')

(/1 I)!
II(X) II (cos.Y cos .Y/).

t 0

with epo(x) sin x or I. It follows at once from this and Eg. (1.9) that the
optimal interpolation points on the interval [0, 7T] are

( J'
~I 2). O. I ..... 11.

The systems (1.3.e) will not further be treated here.

3. CALCUIATlO:" OF OPTI\1AI '" ITRPOLATION POI:" IS

We like to determine the optimal interpolation points for exponential
interpolation of the type (2.10) on an arbitrary interval [a. h]. and for
trigonometric interpolation of the type (2.14) on an interval [a. h] with
{j(h-- a) 277. For reasons of convenience we wish to perform the compu­
tations on the interval [-I, I]. However. the spaces spanned hy the systems
corresponding to (2.10) and (2.14) are not invariant with res pect to the linear
transformations (1.11); these systems arc changed into

: l~ e\ll~ e-- ,1
1
••••• £1,1\;'\1<. e /\/.11 1 :.

{I, cos.l/I, sinw, ... , cos Nyu. sin Ntu:.
{j(h a)l.

where II is the variable in the interval [ I, I]. Therefore, the problem of
determining optimal points on an arbitrary interval can be solved without
loss of generality by regarding {j and, as parameters (mostly {3 I), and
by solving the same problem on the interval [ I. I]; we have 0 'J:.

in the exponential case and 0 'x 77 in the trigonometric case.
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It immediately follows from (2.11) and (2.15) (where x and f3 have been
replaced by II and Cy. respectively) that we have to determine functions

W,(u)
N

I )1/;("""
N

and
N

y" I (y,. cos,ku ill. sin,ku)
,. 1

that are minimax approximations on [ I, 1] to the function(u) u. Since
the latter is odd. so are WI' and W/ : they, consequently. have the forms

We(U)
N

I at. sinh ,\ku:
I. 1

.v
I 17,. sin,ku.
k~1

(3.1 )

The optimal interpolation points are the zeros of the functions

H',.(u) = W,.(II) - II: (3.2)

The (at least) 2N 2 extremal points of W,,(II) and w,(u) are 2 2 sym-
metrically situated with respect to the origin. So Il',.(u) and 1"/(U) have
(at least) N -- I extremal points, ancl. hence. (at least) N zeros in the interval
(0. I]. The extremal points are zeros of the functions

.v
1\·,.'(u) =\ I kak cosh,ku

I.d

I;
N

11'/(U) =-, I khk cos ,ku
I,d

1. (3.3)

By the substitutions z cosh uU and z = cos cw, respectively. these functions
are transformed into polynomials in z of degree N and. hence, have at most
N zeros in (0. I]. Consequently, there must be an extremal point at u 1,
Furthermore, H',,(u) and II'/(U) have precisely N zeros in (0. I]; between two
adjacent extreme values these functions are strictly monotonic.

In view of these remarks the minimax approximations (3.1) can be com­
puted effectively by means of Remez' second algorithm [7]. Let us denote by
('/ . 1/ • i L 2.... , N, the positive zeros of H',(u) and W/(II). respectively, the
extremal points by Ci • 1/ , i =', I. 2.... , N I (with CN1 tv, I I). and
the deviations by dl' , dl • These quantities, together with the coefficients a/
hi, . must be calculated from the equations

N

I al. sinh,kci - 2/
/.- I

:V

1\ I ka". cosh "ku
k~l

0,

l)i d,. , 1.2.... , N I. (3.4.a)

(3.4.h)

.v
I ak sinhyku - u = 0,
1.1

(3.4.c)
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and
N

I hi, sin:xkt, -- t,
/,c~1
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(-I)'dr • 1.2, .... N 1. (3.5.a)

N

et I khl, cos :yku 0,
k~1

N

I hr, sinxku- u O.
/:1

(3.5.b)

(3.5.c)

The remainder R2N 1(U) of the interpolation types under consideration
consists of two factors (see (1.4). The first, L2V t 1[f(~)]. depends on the given
function flU) and on ex and is in general unestimable. The second, h,,(u) or
ht(u), given by (2./1) or (2.15) with f3 and x replaced by rjC and 1/, has been
minimized by an appropriate choice of the interpolation points. When
putting

E =e
(-I )"Vi l d"

(Cl: N N!)2
(3.6)

i.e.. E,.: max he(lI)!. E{ max hr(u). we may say that the accuracy
of optimal exponential or trigonometric interpolation ultimately depends on
E e and Et .

Following Nitsche [8] we call e, , I;. c;, t; • d,., d{ , E" E I the Chebyshel'
quanlilies of our approximation problem. Tables I, II. and III contain
numerical values of these quantities for N 3 andx= !" I. rr. Table IV

TABLE I

0.5

f, /,

1 0.22399 0.43632 0.22105 0.43143

2 0.62612 0.i8392 0.62082 0.77970

3 0.90213 0.97526 0.89977 0.97459

d, 0.16818 x 10-;' d, -0.18090 10-;'

E, 0.29898 x 10-' 'I 0.32160 x 10'

gives the corresponding quantities for the case of polynomial interpolation.
We denote by P; and p,. i I. 2, .... N, the positive zeros and extremal
points of T2vn (I/), which are given by (see (1.9) and (1.10»

Pi = sin irrj(2N + I). Pi cos(N - i + l)rrj(2N + I), i = 1,2,... , N.

(3.7)
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TABLE II

,x= I

t i

I

2

3

0.22837 0.44353 0.21662 0.42396

0.63378 0.78991 0.61260 0.77300

0.90542 0.97618 0.89597 0.97349

d, = 0.96785 10' d, ···0.12960 X 10~'1

" .~ 0.26885 x 10·' " 0.36000 1O~5

TABLE III

7T

2

3

f,

0.27780 0.51744 0.16316

0.70389 0.83933 0.48755

0.93045 0.98289 0.80000
d,_ 0.32546 x 10 1 d , I

',- 0.94038 > 10 r, " 0.28893

TABLE IV

0.22252 0.43388

2 0.62349 0.78183

3 0.90097 0.97493

d,,= 0.15625 x 1O~1

'" ~. 0.31002 X 10- 5

t,

0.32589

0.64678

0.93443

The maxima dp and E p of w(u) and h(u) (see (1.10) and (1.8)) are

Ell = dj(2N + I)! . (3.8)

The Chebyshev quantities are functions of ex, defined in the ranges (0, OJ)
and (0, 17). It is seen from (3.1) and (3.2) that a sign changement of ,y only
causes a sign changement of the coefficients ale , b Ie • Hence, we can extend the
definition interval of these functions to (-. OJ,CXJ) and [--17, 17] with exception
of the point ex = O. The value ex = 0 makes no sense from the interpolatory
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point of view, but we can define formally a Chebyshev quantity for \ 0
as the limiting value of that quantity for, ~ O. It now appears from (3.1),
(3.2), (3.4), and (3.5) that the coefficients 0 1., hi are odd functions 01'\.

while the Chebyshev quantities are even in t.

Our approximation problem is equivalent to approximating the function
fly) r on the interval [ t,t] by a function of the form L;v 1 YI, sinh k)'

v .
or L;,cl YI sin kyo Let us use the same symbols, but marked with a star, for
the Chebyshev quantities and function coefficients related to the interval
[\,1:]. It is immediately clear from (3.4) and (3.5) that a starred quantity
equals ~\ times the corresponding Linstarred quantity. It is known [7] that the
starred quantities depend continuously on t. In the polynomial case \ve also
have [1;* '\[1; , p; x tp; , but ell' '" c. \2.\ Jd".

The quantities 01, • hi. ' k I. 2, .... N. d, . . and d, have the following sign
properties.

THEOREM A.

k 1,2..... N: d,. 0,

(-I )\, where sgn denotes the signumjill1ctiol1.

Proal: The quantities e; are the positive roots of Eq. (3.4.b). which after
the substitution l' C.cc e'" can be written as

(N 1) ON 11"2N I

NaN]-~ O.

2
1""

This eq uation has 2N positive roots e""'-- Hence, by virtue of Descartes' rule
the sequence of coefficients must have the maximum number of sign
variations, whence it follows that sgn a/, ccc ( I )1,1. Consequently.

sgn Il',:(u) = ( I lV' I for II eN .

The last equation (3.4.a) then shows that d, O.
The proof for the trigonometric case is more complicated. Equation (3.5.b)

can be reduced to a polynomial equation P(I') L~ U (\:('1.1'1. 0 by means
of the transformation l' cos (\:u. The latter equation has N positive roots
cos (1:i; if, 77/2. We first show that the theorem is true for" . 77/2. Using
the relation (see [9. formula 403.3])

[I,d . k(k j I )(k
cos kx "C' I (- I )J -' -.-

i---O

j 2) ... (k
.._-------

j!

we find for the coefficients c/, the following expressions:

j O. I, .... [Nl2], (3.9.a)
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where

__ j /-1 (N - 2j .... 2/)(N - 2j i 1
CS - cl -- I (-1) -----..-- ----7'--

Icc! .

(N·- 2j 2/) hs c)"cl'

and

1) ... (N - 2j I)

(3.9.b)

j = 1,2, ... , [(N- 1)/2], (3.10.a)
where

i-I (N -- 2' 21
C N '!.I 1 =-= I (--J)I -1 -_-.-1----

1--1

I )( N 2j i/)'" (N- 2j

I!
2)

(N 2j i 21 l)hN-2H21.1' (3.10.b)

In (3.9) and (3.10), if N ~- 2j or N= 2j - I, the expression 0.170 must be
replaced by -1 further L~l = O. The coefficients Ck have alternating
signs. Suppose bs 0; then C"._21 0, C S - 21+l <: 0, bN ! 0 and, by virtue
of (3.9.a) and (3.10.a),

(N- 2j) bN - 21 C,. 21 ; (N-2j-L l)bs - 2h1 <:C.v 21 l' (3.11)

From (3.9.b) and the first inequality (3.11) we can derive the following chain
of inequalities:

(N 2j)b N '!.1 C N21

[(N- 2jr- 2k)(N 2j ~. I) . . ]I ( ly·2---_._. JI'V - 2/- k -- I)"~(~V -=21 -- 2)
/.=2 1!(k - 2)!k

(N - 2j -. 2k) bN-2IJ21,

I (-IY:J [~~ ~~:i 2k)(I~i;l_ 2~ .- ;)~~Ll~.~j(j~:-_~j~_})]
I~:J 2!(k -- 3)!k

(N - 2j -12k) bN 2.H2k

I (-- 1)k_j(~__~~;-i- 2~~( ~~- ;j- 2:'" (~~~L-,=k. i I)]
1..1 (/-I)!(k-/)!k

(N 2j -I k - I)'" (N - 2j -L/)(N - 2j -- 2k) bs 21i21

N(N 1) ... (N -- j I) (N
--T-~)!O!--c----- Nb N ~-= .) Nb N 0,
111

j= 0, I, ... , [NI2]. (3.12)
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tn the same way it follows from (3.JO.b) and the second inequality
(3.11) that

(N - 2j l)bN - 2i+l CN - 2J+1

1
1 ) bN - 1 0,

j - 1,2,... , [(N 1)/2]. (3.13)

The inequalities (3.12) and (3.13) are reversed if bN O. It follows that the
coefficients bl, have alternating signs. Suppose now N even and bN O. Then,
from (3.9.a) and (3.9.b), Co = -W/ex +- Co) 0; this is not possible since,
by (3.12), also Co O. Suppose next N odd and b,\' ~ 0; then bN - J 0 and
Co 0 which, again, is impossible since by virtue of (3.13) (with the inequality
sign reversed), Co O. Hence, sgn bN =- ( Iy';] and, consequently,
sgn bl, == (--Iy' ].

Returning to the general case that 0 !Y 7T. it is impossible that a
coefficient b , equals zero for a certain value of :Y; indeed, the system
(I, cos exu, ... , cos(/ I) exu, cos(l I) exu, ... , cos Nexu} is a Haar system on
the interval (0, 7T] and, hence, every function of the form I.~.!~ Cf, cos (yku I
has at most N-- I positive zeros, contradicting the fact that the function
(3.5.b) has N positive zeros. Since the coefficients bl, are continuous functions
of :y (except perhaps in :y =cc 0), they never change sign.

Finally, in order to determine the sign of dt we observe that the substitution
I' == cos (YU transforms the II-interval [0, I] into the I'-interval [COSY. I],
whereby II 0 corresponds with v == I and II 1 with I' COSY. For the
roots v, cos ext, of the transformed equation P(v) 0 we have I', . 1"11 .

Hence, [P(I')}'>"l is positive if bN 0 and negative if b\ O. This means
further that (see (3.5.a», for u t] , wt(u) increases if N is odd, i.e,. --dt O.
and decreases if N is even, i.e., d t O. This completes the proof of the
theorem.

Theorem A allows us to compare the graphs of the error functions lj'p(li),

WI(II) with the corresponding error function 1'2\IJ(II) for the case of poly­
nomial interpolation, The differences are

sgn 11'/(0) - I, sgn \1',,( I ) If' 1·

sgn \1'/(0) _..- (-I)N! 1 sgn l1'/( I) -- I ;,

sgn 1';N+l(O) ..- (-l)N, sgn 7'2N-j]( I) I.

We then see from (2.11) and (2.15) that the signs of 11/(0),11/(0). and 1';N .1(0)
are identical. just like the signs of 111'(1), ht ( I), and 1'2,\,[(1).
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4. BEHAVIOR OF CHEBYSHEV QUANTITIES FOR SMALL VALUES OF eX

THEORE"'I B.

lim <', = lim I, = Pi,
1,0, ,0

lim ei c= lim ti = P, ,
.:-t---70.\,O

I = 1,2, .... N.

where Pi and p, are given by (3.7); limo->() de = lim,x_>B d l = O.

Proof We first consider the exponential case. We expand the function
w,Ju) in a Maclaurin series. to give

When putting formally

(4.[ )

N

,:.x I k 2 )J...:..l aJ,: = I "2 JJ-+-1. 2n/x2 III ,

k=-l 111=0

(valid for small values of 0:) and

we can rewrite (4.1) as

P = 0, 1.2....

P = 1,2,... ,

(4.2)

(4.3)

lI,,(U) = (Au - I)u + I g2Jl!1(U)X 21'.
jl=l

We also have for the derivative

w,.'(u) =c Al. B - +- I g;'PI1(U) ;x~I'.
p=1

(4.4)

(4.5)

Now we introduce the following formal series for extremal points and zeros,
valid for small values of ex:

jj.
I L ce.1.2m

cx2m
.

Iii=H

e·, L C1 ,l,:2m:y
2JiI

111-=--'-0

(4.6)
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g~" ](2,) g~jJ+l(c",i,o) if! (I C,.,i,~",,-2'" g;'J'I("(,),O)
\//1--1

I J _, '~11-'1, __I '\ C ~))/) (21) (F'(2/J-----TlT \"f'1 "",~I,,:li, g211 i] \.., ,i(0)' (4.7)

Putting this into (4.5) yields

() I C~P,,'l(Cc,',o) ,2/1,
lid

(4.8)

where C;jl 1 is a polynomial of degree 2p. For the lower degree polynomials
Ca', Co' we have

Since, from (4.8), C;,,-1«',,1,0) 0, i I, 2, ... , N, all p, and since the
polynomials g;jl~1(U) are even and, hence, have at most p positive zeros,
we can conclude that

I' o. (4.9)

It follows further from (4.4), (4.7), and (4,9) that

11',,(2,) I)' d, L 2""V. (4.10)

where C 211 ( J is a polynomial of degree 2p I. In particular we have

14.ll.a)

(4.1 Lh)

From (4.10) we see that d
"

OC,"'\), and we can put formally

(4.12)

Since (Theorem A) dl' 0, we know that (12,\ o.
It follows from (4.4), (4.9), and (4,12) that the extremal points _ i'" I,

in the limit IX ~.- 0, are zeros of the polynomials qiN - g~N+l(II) and
(I - II") g;~, 1(11). The polynomial g2Nf \(11) thus satisfies the differential
equation
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the solution of which is known [7] to be proportional to the Chebyshev
polynomial of the first kind T2S . l(U), More precisely we have

g2N+l(U) ~_. (-Iy,l Q2NTZSil(U), (4.13)

since sgn w,,( I) = (-I )\1 1 and Tzy 11( 1)= I. Now the theorem (for the
exponential case) follows at once from (4.6), (4.ll.a), and (4.13).

We can repeat the same calculations for the trigonometric case. Starting
from the Maclaurin series for w1(u), and putting

p O. 1,2,... ,

l'

hz /! .1(U) = I
lil----O

1,2, ... ,

t; t i
III -0 Iii U

it is easy to show that d l O( Cy 2:V); hence, we put formally

(4.14)

where, by Theorem A, sgn r2N == ( -I)Y. Further, it is readily seen that

(4.15)

which proves the theorem for the trigonometric case.
We now wish to calculate lim,_o E e and lim,yo 1'1 . Therefore, we need

to know Chv and rZN . The calculation is based on the following lemma.

LEMMA a. We have

sgn A2N ~p-!l ,0

( -- I)N 1,

1),\
p =~ 0, 1,2,... ;

ji.trther we have

AZN -+1.o == fl-2N 1.0-= (_-I)"'1(N!)2;

A2NH,0 = fl-2N-t3.0 ,~c (--I )"'-l(N!)2 C~1 k Z
);

(4.16.a)

(4.16.b)
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Proof We consider the set of infinitely many linear equations (4.2) with
the unknowns Oika, = kah*' k 1, 2, ... , N. We define V~N-l) and VJ.,;"'+J» to
be

1
P 22 N2 12 22 N2

V IN - 1) V,~
J)

N

12N--1 22N- 1 N 2N-- 1 12K -I 22'1-1 N2N -I

12N-- 2 22N2 N2N 2 12N ;!'Ji 22N1-'2.jl N2N.2/,

These are determinants of Vandermonde type and, hence, have a positive
value. It is not difficult to show the relation

N

V~'i)= (I k 2
) V~'i 1)

./.~l

From the first N equations (4.2) and from (4.9) we get

(4.17)

(4.18)

The second, thirth, ... , Nth, and (N - p I)th equations (4.2) together give

From (4.18) and (4.19) we infer

(4.19)

N 2,/CV-.,,-1) VIN-2),N [N-1
-T;TjV2i-- -'VIN':'-l)-

N-l N

where sgn A2N - 1.2 (-I )N. From this and Eq. (4.17) the lemma follows for
the A-quantities. By repeating the same calculations, the lemma appears also
to be true for the {L-quantities (however, observe that sgn {L2N-l.2 ~= (- I ),'.1).

THEOREM C.
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Proof. Equating the coefficients of U2N+l in both sides of Eqs. (4.13) and
(4.15) gives

'\2N+1.0 = (_I)N+1 q 22N = J-L2N+1,0 - 22N
(2N + I)! 2N (2N + I)! - -r2N·

On account of (4.16) we obtain

(and, hence, huv+1(u) = (- I)N g2N+l(U». The theorem then follows from
(3.6), (4.12), and (4.14).

In principle we can calculate all quantities '\2nt+1.2P' Q2P' [;".1.211I' and
c".i,2rJ1 from the infinite set of equations (4.2), from (4.10) and (4.12), and
using the fact that we already know the coefficients of g2N+l(U), The same is
true for the quantities related to the trigonometric case. In particular,
knowledge of q2N+2 and r2Nc 2, C".i,2 and [;1,;,2, C".i,2 and Ct,i,2 informs us
about the increasing or decreasing behavior (for small values of IX) of the
quantities E" , ei and II' el and t l , respectively. Results are established in the
next two theorems.

THEOREM D. We have

(4.20)

Ct,i,2 = -C",1,2 . (4.21 )

Proal From (4.8), (4.9), and Theorem B we get

Since g~N~1( pJ * 0 (see (4.13»), the first equation (4.20) is proved. The
second equation (4.20) can be derived in an analogous manner, starting from
the equation w,,(eJ = 0, and using (4.11),

Now it follows from the calculation procedure of the .\- and fl-quantities
that I \,j i =c I Il-i.J :, all i, j. Hence. we can infer from Lemma a and the
definition of h2N+3(u) that g2N+3(U) = (-I)N II h2.,> 3(U). Equations (4.21) are
immediate consequences of this.

THEOREM E.

r 2N+2 = (-I)N Q2N+2, I.e., sgn r 2N c= sgn r 2N .
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Proof Consider first the exponential case. It follows from (4.10), (4./1. b),
(4.12), and (4.13) that

1)' q~\ ~. 1,2, ... , N I.

I. On account of the definition (4.3) of g~\, .:\ we then have

"'[ (-- I)' 1 q~N "

A'2N;l,~ -'2,"./11

(2Nt T)! Pi I. 2, .... N I. (4.22)

The quantities in the right members of these equations are known from
Lemma a. When considering 112I11i1.2N~I" ~/(2m ! I) ~ • m O. I.... , N L
and q2NH as unknowns, the determinant D of the system (4.22) is a sum of
determinants of Vandermonde type; it is readily seen that

sgn D

Solving the system (4.22) for (h\.~ gives

-I )'- (4.23)

1
D (2N 1)1 PN

I

-'2,N 1
PN

-'2iV I
Ps

I

112 N-t:l.O
----~-~

(2N ~ 3)! Ps PN:l
I I

By virtue of a relation similar to (4.17) we have

-2N -J
PN

I

j\ 2 p,'].jV P,2\ , " " -').'\' pfNPl NN 1

PN
., -'2N -2N-t-2 I Pk2

PN
., -';!I\' M:;'PN PN /,-1 PN

I I I I

Denoting the determinant on the left side by P. we obtain for Ih\

(4.24)
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[n order to calculate the expression between brackets we must calculate first
,1~\ I:! or, by Eq. (4.16. b), ,12\,-12 . We have [7]

N

T:'.N dll) --- I C,y2N-21. 1

;, 0

C/, ~ ( __ I)'2 2N 21, 2JjY-k-~d2N --/ + I).

(4.25)

Hence, from (4.13), (4.3), and the expression for (/2,v we obtain, puttingk c= L

Consequently, by (4.16.b),

T2~N:I.f)! c= ( I)NCI, k
2
) (2N,(~/;~2. 2N'

We also infer from (4.25) that

(4.26)

N

I p,2 =
;=-1

and, hence, that

(2N - I) C1
--( 2N---r1)C;;

2N

N+I

" -,2L. Pi
i--,-l

(4.27)

Putting (4.26) and (4.27) into (4.24) yields

2)! .

It then follows from (4.23) that Q2N+:'. O.
The theorem is now easily proved for the trigonometric case, too. Instead of

(4.22) we now have a system with unknowns (-I )'" J.L21ft, I.2N-21ft' 2/(2m + l)! ,
11/= 0, I,. .. , N - I, and r2Nc2' with the same determinant D. The right
members are

(since J.L:'.\'! :J.oC~ ,1tN: :1.0 and J.L2N+1.2

(4.24) that r:'.\'-,2 (--I)\'rl Q2N!2'
-,12N+I.2)' Hence. it appears from
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5. BEHAVIOR OF CHEBYSHEV QUANTITIES FOR LARGE VALUES OF:\:

We can summarize the results of this section in the following theorem.

THEOREM F.

lim de = lim ei = lim ei = 1,
(1'; .... ,::0 ,x---o>-y)

I = 1,2,... , N; lim Ep = O.
.r -.~ XJ

Proof We consider first the trigonometric case, being the simplest one.
If ex TT, it follows at once from (3.5.a) that dl = ( -I )N. A more
detailed calculation shows that, for ex close to TT,

where B!.: =~ b!.:"~;; . By virtue of Theorem A the expression L:{~o 1 ( Iy.l B,c
is positive; hence. I dt i increases towards the limiting value 1. For EI we have
E I == (-I}\'l/(TTN N!)2. It is not difficult to show that (TTVN!)~

22:V(2N'T I)!; hence, ! E{ E p .

Let us now turn to the exponential case. We first consider Eq. (3.4.b),
written in exponential form, and express the coefficients ka!.: as functions of
the roots exp(l::i'/*) by means of the elementary symmetrical functions of the
roots (see [6]). These can be written compactly as follows:

(N - 2j ._- I) aN-2H

= ~NaN Ito 1(N j :! -; I) 221
t1"",It/I2I " Cfl: cosh et )\,

j 0, I, ... , [(N 2)/2],

2 \ NaN %: i(~,-~'/) 2" ,,<J,Jfl, co,",~") I, Noven

; ··/-NaN [Nt ((:~ (');,- (/) ,,,, ",J ',,>< ell: co,h )1'
N odd.
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From these formulas we can detect the behavior of the Gk for large values of:.:.
Replacing cosh ct by expect )/2 we obtain

~ m m

Iwf.* ",-. (~1)1'11 2. .£' . exp (~~ I ct,,),
II -::l2<·· ··:::tk ,Ji/=1

k 1,2, ... ,N. (5.1)

Doing the same replacements in the equation w/(cJ = 0 we get

N

L (kG f.*/2)ekej * ~ I,
k~l

or, on account of (5.1),

J 1,2, ... , N.

J I, 2, ... , N. (5.2)

If J I, Eq. (5.2) is satisfied for ex = 00 since the last term of the left
member is equal to I, while all other terms are 0, their exponents being
negative. Ifj 2, then the left member of (5.2) will have a finite value only if

limc'J = limc2 = ... = limcN = L,
·c' "x "or: --,:x:'

L I. (5.3)

For the equalities w,.(cJ ~= (~I)j de , J = I, 2, ... , N we have

N G k ke * ~ j
'\ ~ e ) - e· .~ (-I) dL, 2 J c,
k~l

or, on account of (5.1),

J = 1,2, ... , N,

(5.4)

Again, for j = I, the limiting value of the left member is I; hence,
lim~~.", d,. = lim~~>cx c'J = L. If we apply (5.1) to the equation w e(1) =

(~ I )N.1 de • we obtain

(5.5)
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Since the right member remains finite, the same is true for the left member;
there the leading term is

I
\'

(,N)'( I)N 1exp', ~1 (I

For this to be finite we must have liW, , ('; I, i.e.. L I. Since d,. remains
finite, lim" "., E, O. This completes the proof of the theorem.

From (5.5) we can deduce further that

I; log,;."

where the constants I; are such that £, E; 1

asymptotic expansions hold. Taking .I
lim ,<,JiU'] d,) I : hence.

1,1. .... N,

O. For the zeros e; similar
in (5.4) we obtain that

d" .--- I

This shows that E,! decreases towards the limiting value O.

6. GLOBAL BEHAVIOR OF CHEBYSHEV Qt,ANTlTII.S

In this section primes denote differentiation with respect to ,. We Jirst
demonstrate a monotonicity property or Chebyshev quantities related to the
interval [ '.,,].

THEOREM G. lhe quantiltes d,*, d/ x
, (','. 7,"', e,', f i '. i

are l71ol1ofonicallr increasing.!ill1cfiol1s oj,.
I. 2..... N

Proof We give the proof for the exponential case, the other case being

completely similar. Consider two values 'I andJi~ of '" "I Ji~ . The function

.V

I [K{lt,*(cY j )

/,'-,-",1

(K I))', (6.1 )

where K d'*('yJ/d,.*(e'j), is defined for all values ofJi and has at least N

positive zeros. one in each interval (C,*(oJi1)' C~11((\I)]' i = I. 2..... N, with
C~, 1 ='Ji. If K should be equal to I. a linear combination of the N functions
sinh k)', k = I. 2, ... , N, should have at least N positive zeros, which is
impossible since the system or these functions satisfies the Haar condition
on any interval (0. ,,]. Since d,* \~() 0 (Theorem B), the theorem is proved
for d,*.
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If i\*(a1) > i.\*(a2), then there should lie a zero of the function (6.1) in
th e interval (0, e1*(a1)], too. This is impossible since then this function should
have at least 2N -+- 3 zeros, while it is clear that it can have at most 2lV 1- 1
zeros. Suppose now there is a J, j I, such that c/( cx2) > c)*«(X1) and
Cj+1(0:2) < efi1(a1)' The interval (c)*(cx1), CtH(CX1)] then contains at least three
zeros. which brings the total number of positive zeros of (6.1) up to at least
N ~.~ 2, again impossible. This proves the theorem for the extremal points c;*

and, by using the same reasoning, also for the zeros e;*.
We next show some monotonicity properties of the al.* and hi.'" coefficients.

THEOREM H. The coefficients al,* 1are monotonically decreasingfimctions
oj' ,x, i.e .. sgn aJ' = (-1 y. The coe.fficients h/, * are monotonically increasing
jilllctions oj' 'X, i.e., sgn bt' c, ( ~ IY I

.

Prool It follows from (3.4), (3.5) that

IV

L a,* sinh kc,.* - c;* = (-1)1 d,*,
/,.e]

i == 1, 2, ... , N+- I, (6.2.a)

IV

L Ih*sink7,.* ... 7/*
7.=.1

(6.2.b)

where C~.l == (:ViI .x. Differentiation of (6.2) with respect to x yields

.V !\i

L a/;' sinh kcx ~i L ko/," cosh hx - I == (-1)"'1 d,:',
/'~·I I.. ~]

IV N

I ht sin key t- I kh,* cos keY - 1= (- \)N-II d;'.
I,~I kc·, I

and

N

L a7;' sinh ke/ = ( --I)' ((~',
I, I

IV

L hi;'" sin kt,. x - (~- I) / d,*',
I,~l

I == I, 2, .... /V,

i~~1,2, ... ,N.

(6.3.a)

(6.3.b)

It appears from these equations that the functions

N

f~(y) = L at sinh ky,
1.~1

f~( y)
N

L bt sin ky
I:~l
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have the largest possible number of positive zeros, i.e., N I. Since d,:' 0
(Theorem G), it follows that sgn aj,j =- (- I)'. Furthermore, by applying
the same reasoning as in the proof of Theorem A, the at must differ from
zero and have alternating signs. Hence, sgn a't (- Jy. For the trigo-
nometric case we have (Theorem G) sgn dt' (I )v. and. hence.
sgnj~(tl*) (--1 Y 1; this means that sgn b~' I )V j. which further
implies that sgn ht (-- I V I.

THEOREM I. The quantities ' L;~"l Iwi. '" I.! L:;~~1 kal,* cosh b I.
! L:;~~1 kh;* I and I L~~l kb l,* cos k,x I are monotonically increasing
jill1ctions of:>.. i.e., L::":1 kat' O. sgn(L:;~ol IWI.* cosh lex I)' I )V~ '.
·sgn'2..~'lkbt' (--I)\I\and('2..~_lkb/.*cos/o I)' O.

ProoF Since from (6.3), sgnj;(i'/') I and sgn/;Ul*)

immediately follows that '2..;": 1kat 0 and sgn L~~l kb7' (
sider now the functions

N

.~(y) ·~=f;·(y), I kah* cosh k -- I.
I;·]

( - I)'" t. it
I)VI.Con-

(6.4.a)

dff,·(y)ldr
N

I ka;' cosh ky
I;~I

v

I k2ak * sinh kyo
b .• ]

(6.4.b)

The first can have at most 2N real zeros, the second at most 2N I. We have

I. 2..... N I.

with i'']V 1 x. Since d;' 0 and sgn(L;~] ka/.* cosh hI) c. (-1)\ t.

ff,,(y) has at least N positive zeros and, since .~,(2,*) ,-F,,( -2,*) and
L:~~l ka/* --- I ", O. also at least N negative zeros. Hence, it is impossible
that d.¥;. (cx)lefr c- ('2..~-1 ka/,* cosh k ..x I)' O. and '2..:":] kar.* cosh kcx I
is a monotonic function of 'x. It now follows from (4.2) and (4.9) that. for
small values of ct, this function is 0(a2

\) and. hence. has the same sign as its
derivati ve. This is consequently true for all values of cx, Exactly the same
reasoning applies for the quantity '2..~~1 kbl,; * cos hx-- I.

We now proceed with monotonicity properties of Chebyshev quantities
related to the interval [ J. I]. These are based on two lemmas.

LEMMA b. Il al and (1. 2 are two mlues olx satisfying the condition

[(N - 1)/N] ct2 (6.5)
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then the junctions

N N

FJu) = I ka,*(:v.]) coshy]ku - I ka, *(Y2) cosh'2ku.
k~] k-l

N N

F/(u) = I kbk*(lYl) cosx]ku - L kbk*('1.2) COS\2ku ,
k-] k-]

(6.6.a)

(6.6.b)

can hare at 1110st 2N real zeros (oj" which N positive).

Proof Suppose N even, and assume that F,/u) has more than 2N real
zeros. When rewriting F,/u) as

where

:v
F](u) =c a] "'(,y]) --; a] *(x]) ('-2",11 ..!. I ka,.*(CY2)[e('-])~11l + ('-(J:ilh,,,]

1;:,,-,,2

the derivative of the latter function conseq uently has at least 2N real zeros.
When putting

we further infer that

N

dF
2
(u)/du = I (k 2 - 12)x]2kQ/(cy])[('(k~1)~,llT e-II:-])Olll]

I,-i

i.-I

has at least 2N - j real zeros. In the expression for dF2(u)/du the coefficient
a l "'(ex l ) no more appears. By proceeding this reasoning we can successively
eliminate a:l*(CYl)' a"*('x1),,,,, a~ l(eYl), and find a function

dFN(u)
- dl/
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which must have at least N r I real zeros. Next we successively eliminate
a2*(:x2), a4*(x2), . .. , aN *( cx 2), starting from

dF"I(u)/du

We finally arrive at a function

i /\//') ,v:;)

I ~ ri [k 2
- (2m - lY] !X 1

N ri [k 2x1
2 - (2m)2 CX2

2] kale *(x1 )

keyen (mel lil=l

-I )'f1 [k 2cx2
2

- (2m-- ly CX J
2]X/"

I,oad \ 01-,---1

lv'/:!n [k 2 - (2m)2] kale *(cx2)[e(j·+N)~,11

'JI1=1

(6.7)

which must have at least one real zero.
Consider the first sum in (6.7). The first product (with k even) contains k/2

positive and (N k)/2 negative factors; the second product contains, by
virtue of condition (6.5), (k- 2)/2 positive and (N- k -1 2)/2 negative fac­
tors. The sign of this first sum consequently is [(-I )SI, . ] sgn a/'*Lcven =c ~,,1.

Consider next the second sum in (6.7). The first product (with k odd) has.
by virtue of condition (6.5), (k I)/2 positive and (N - k - I)/2 negative
factors; the second product has (k I)/2 positive and (N k 1)/2 negative
factors. Hence, the sign of this second sum is [( - I )NI. sgn ai, *Lodlj I.
The conclusion is that all terms in (6.7) have the same (positive) sign for all
values of lI, which contradicts the fact that dF2N/du has at least one real zero.
Hence, the lemma is proved for the function F,,(u) and for even N. A com­
pletely analogous proof holds for odd N (we then eliminate a J *(!X I ).

a3 *(cx] ), ... , as *((XI). a2 *(!X2 ), a4 *«2)"'" aiv 1{:X2 ))·

By considering u as a complex variable and by substituting e"" for z in
(6.6.a), we obtain a function of the form ~rNg(z), with

N

g(z) =- I kal,*(!Xl)(zN-k~1!fr2

k~·l

N

_N""'I/''') "k *(' )(' N+I,L ---- L ak LX2 z
I., 1

We have proved that the function g(z) has at most 2N real zeros. Observe that
this is also true for functions of the forms (6.6.a) and (6.8) with arbitrary
coefficients C/,.] , C1.• 2 • k = I, 2.... , N, provided the CA, J have alternating signs
and sgn C/.. 1 sgn CJ.,2. Since the function (6.6.b) reduces to the form (6.8)
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(apart from a factor r Nj2) after the substitution ei
"" = z (with "ol i u i 7T),

and since sgn bf,* = sgn a,*, the lemma is also true for FI(II).

LE\lMA C. If 0:1 , CI:2 satislv condition (6.5), then there exists a constant C,

o C 1, such that for each constant K, 1 K C, the fimctions

N N

C,.(II) = I ak(O:l) sinh (Xlku - K I ak(cx2) sinh (X2kll +- (K --- I)u, (6.9.a)
k- 1 I.~l

I\/ i\'

Ct(u) I bk(cx1) sin cx1kll - K I bk(,xOl) sin,)<U- (K - 1)u, (6.9.b)
f,~·l /;. I

N ,N

dCc.u)jdu = I~l kal/(cxl) cosh cx1kll - 1 - K C~l ka f/(x 'l ) coshx2ku - I),
(6.10.a)

N

dC/(II)/du ~2' I kb,*(CX1) cos ,x1kll --
1;··1

N

- K (I kh//I,'2) cosx 'lkll -- I),
f.. ~l

(6.10.b)

!laue at most N positive zeros.

Proof We choose two values CX t and ;X2 close enough together such that
condition (6.5) is satisfied. Then, since L~d kaf.* --- 1 is a negative mono­
tonically decreasing function of cx (Theorem I), there exists a constant C1 '

o Cj I. such that for each constant K1 , 1 K1 C1 •

dG,,(O)jdu = f. kak*(cxl)- I - K1 (f. ka f,*(x 'l )- I)
k~l ./;~l

O. (6.11)

By virtue of Theorem 1 and for CX1 and CX2 close enough together there also
exists a constant C'l , 0 < C'l < I. such that for each constant K'l •

K'l COl'

( _I)N.

(6.12)

Both inequalities (6.11) and (6.12) are satisfied for constants K such that
I K ~ max(K1 , K 2). For such a constant the function (6.10.a) cannot
have N -+ 2 positive zeros; otherwise its derivative should have N 2
nonnegative zeros (one of them being u ~-~ 0), and its second derivative,
which is a function of the type (6.6.a) (the coefficients of which also have
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alternating signs), N 1 positive zeros, which is impossible by virtue or
Lemma b. This shows that the function (6.10.a) has at most N positive zeros.
A similar proof holds for the function (6.10.b). Consequently. G,.(II) and (;1(11)

have at most 2N .. ! ] real zeros, and. hence. at most N positive zeros.

THEOREVl J. d,. alld dl are IllOnotollicalh illcreasillgjilllctions of \..

Proof Suppose there exist two values,! and 'e' '1

dl('I) d,.(\:,). Then the function
\~, such that

H,.(u)

y

I aAC'I) sinh 'lu
k-.]

."
I a/.(.x2 ) sinh \2kll

I. 1

has at least one zero in each interval k/'d.fi'I('I)], i 1.2 \. with
f s ell. Furthermore, by virtue of Theorem I, there also lies at least one
zero in (0. (>1('1)]' This implies that 11,(11) has at least N I positive zeros.
By Lemma e this is impossible since H,,(II) G,.(ll) 1\, Hence, iI,. lS a
monotonic function 01'\. A similar reasoning shows that this is also true
for dl • The fact that d,.' 0 and d/ 0 for small values of \ (see
Eqs. (4.12) and (4.14» completes the proor of the theorem.

THEOREM K. The qllallt it ies <', . e, are monotonically illcreasing iUflctions
of,; the qualltities Ii , t; art' mOllotollically decreasillgjimctiolls of \.

ProoF Suppose there exist two values\" ':, .',
such that

I.:, , and an index i

Consider the function (6.9.a), with K d"(\l)/d,,(\:,). For " chosen clo~c

enough to,'\::, (which is always possible), K satisfies the condition of Lemma c.
Then the function (6.9.a) has at least three zeros in the interval ((',(,,), (:, ,(\,)].

while in each other interval (f;ictl)' t'l 1('1)] there is at least one zero. There­
fore, this function has at least N 2 positive zeros, in contradiction with
Lemma c. In an analogous way we can show that 1', , I, . and t, are monotone
in ·t. Since lim"" (>; lima . , i'j I (Theorem F), the f, and (', are increasing
functions of,. This implies that (Theorem 0) L.u 0, C,._ O. and
that CU "2 0, Cu.:'. 0, which reveals that Ii and t, are decreasing
functions oft.

It may be remarked here that Knight and Newbery [10] conjecture analog
monotonicity properties for integration nodes appearing in quadrature rules
based on exponential and trigonometric interpolation.

THEOREM L. E,! is a monotonically decreasing jimetion of t; Ef is (/
monotonical/v increasillg /illletion oft.



EXPONENTIAL A'-'D TRIGO:'-lOMETRIC INTERPOLATION 385

Proof Suppose there are two values x] and Cl:~ ,x] 'X2' such that
<,(x]) <,(x",). Then Cl:;Nde(lXI) occ cx;Nd"(x",). Consider again the function
(6.9.a). with K = Cx]!x~)",,\'; K satisfies the condition of Lemma c if (Xl is
chosen close enough to "2 . This function has at least one zero in each interval
(l',(xIL l"'I("l)], i = 1,2.... , N - I, and at least two in (eN(Cl:1)' I]. This
leads to the contradiction that G,,(u) should have at least N I positive
zeros. Hence. <" is monotonic. Since {hev I ~ < 0 (Theorem E), <" is
decreasing for small values of 'x. Consequently this is true for all ".

In a similar way we can show that <I is monotone. Here, how­
ever. there should be at least one zero of the function (6.7.b) in
each interval (lk,]), 1,+1("1)]' i 0, I, .... N. with I" ,~ 0 and l.V+l - I. Since
sgn r C\ ~ sgn r".\ (Theorem E), <I increases for small values of\.
Consequently. this is true for all ,x.

7. CONCLUDING REMARKS

The results of the last three sections admit the following conclusions:

(i) Ignoring the unestimable factor L~f\'+l[f(f)]in the remainders of the
interpolation formulas under consideration, we may say that the exponential
interpolation type is always "better" than the polynomial type, while the
trigonometric interpolation type is always "worse" (Theorems C and L).

(ii) The inequalities f, Pi < ci , i-I, 2, ... , N, hold for all 0: 0
(Theorems Band K); this means that the optimal points for the exponential
interpolation type have a tendency of being located near the end points of the
interpolation interval, while the optimal points for the trigonometric inter­
polation type have a tendency of lying near the midpoint of that interval.

In view of these conclusions it might sometimes be possible to decide what
interpolation type is most appropriate to a given table of data:x, .f(x,)].

O. I. .... II. to be interpolated.
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