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I. INTRODUCTION

Let ¢yl(x), $1(X),..., d,(x) be arbitrary, but linearly independent functions,
and f(x) a function given in analytical or tabular form. The linear inter-
polation problem consists in determining coefficients y, , y, ..... y,, such that
the function

D(x) = ), yihilx) (1.1

=0

satisfies the equalities

D) = flxg),  i=0,1..n, (1.2)

where the given abcissae x, are the so-called interpolation points.

Assume that these points lie in a finite interval [, b], and that f(x),
ho(X),.... dn(x) are defined on that interval. It is well known [1] that the linear
interpolation problem has a unique solution on [a, b] if and only if the system
{dg, &1 ..... b} satisfies the Haar condition on [a, b], i.e., det(¢,(x;)) +~ O for
every cloice of # * [ points x,, x, ,...,, x, from [a, &]. Equivalent with this
condition is the statement that every function of the form (1.1) has at most #
zeros in that interval [2].

The main examples of linear interpolation types allowing a unique solution
are

(1) polynomial interpolation, where

dix) = xt, i=01,.,n; a, b arbitrary; (1.3.a)
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(ii) exponential interpolation [3], where in its most generai form.
dAx) - ", i 0, l.m; a. b and the B, arbitrary; (1.3.b)

(ifi) trigonometric interpolation [4], where

bo(x) Io o X)) —~ cosix. ufx)  sinix. 1.2, N:
no 2N
b - a 2w
(1.9.¢)
The more general trigonometric system
o X) = o8 Brx. upyy(x) - sin a1 0,1 N, n 2N 1,
(1.3.d)

does not always satisty the Haar condition. Other trigonometric Haar systems
are [5}

¢i(X) = sin ix.
dalx) = 1, ¢x) = cos i

In interpolation theory it is important to know the remainder R, ,,(x)
F(x) — D(x). If the functions f(x). dy(X)..... b, (x) are n - | times differen-
tiable on [a, b]. then Petersson’s remainder formula holds [6]

Ryx) = L, ([f(E)] - Mx), (1.4

where x, £ € [a, b]: the differential operator L, , is defined by

i - .20 b g 2w (1.3.e)

‘]Sn(x) o d)n(»\‘) £(x)
Ly a[g(x)] - : : S W (L)
:)u 1)('\-) (]5(,/;/ l)(.\.) g(n ; l)('\») ;
where W(x) is the Wronskian
dolx) o hlx)
Wix) — : : : (1.6)
) B
further A(x) is the solution of the differential equation
Ly} = 1o hix) =0,  i=0.1..n (1.7)

We call optimal interpolation points the zeros x, . x ..... x,, of fi(x) which
are so chosen that this function is the minimax approximation to the null
function on {a, b]. The problem of finding optimal interpolation points is
solved for the case of polynomial interpolation (1.3.a). Then clearly
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L, (6] = fo(€), and L, [h(x)] = A2 0(x) = 1. with A(x;) = 0.

i = 0. 1...., n. The solution of the latter equation is
LG o) — 1T« .
h(x) = TR wix) = ] 1”(,\ ) (1.8)
If ¢ - —1, b ==1, the optimal x, are the zeros of the polynomial

w(x) — 27T, 1(x), where T, _,(x) is the Chebyshev polynomial of the first
kind. The zeros x; , extremal points X; and deviation ¢ of w(x) are then given
by [7]

X, = -—cos(2i -+ )m/2n -+ 2), i =0,1... n: (1.9)
X; = - cosim/in - 1), i=0.1,., i bl d - 2 (1.10)

The linear transformations

x = [h- a)2u -+ (b -} a)/2: = (2x — b — a)/(b — a):
a-.x b — w1 (LD

map the intervals [a, b] and [— 1, 4-1] onto each other. Since the linear space
spanned by the system (1.3.a) is invariant with respect to the first transfor-
mation (1.11), optimal interpolation points are also known for an arbitrary
interval [a. b).

In the present paper Petersson’s remainder formula will be used to develop
a similar theory of optimal interpolation for some types of exponential and
trigonometric interpolation. Results will be compared with the polynomial
case.

2. REMAINDER FORMULAS

We consider the systems (1.3.b) and (1.3.d) and assume firstly that all 8,
differ from zero. (The B8, must be such that the system (1.3.d) satisfies the
Haar condition.) We write the differential equation (1.7) in the following
explicit form:

n+1

Y edx) A (x)y = 1, hix;) — 0, i=0,1...,n (2.1

I

By virtue of (1.5), (1.6) we find for exponential interpolation (1.3.b) that

ex) = (171 [1 B,

i=0
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This is a constant and hence a particular solution of (2.1) is (1) Y/(BoB1 - Bx)-
Since every function of the form ¥, y,e%* is a solution of the homogeneous
equation (2.1), the total solution of this equation is

Bx) = 3y D BB, B, (2.2)
i=0

where the constants y, are fixed by the conditions i(x;) = 0, j = 0, I,..., n.
After a more elaborate calculation we find for trigonometric interpolation
(1.3.d) that

N
ol x) = rl /3[2;

[

the solution of (2.1), consequently, is
N
h(x) = Y (y;cos Bax + 8; sin Bix) -+ (BB - Bn) % (2.3)
i==0)

where the y;, 8, are such that i(x;) «- 0,/ = 0, L., n.
Secondly, we assume that 8, = 0. Then it follows from (1.5) and (1.6) that
¢o(x) == 0. Furthermore, for the exponential case,

ax) = (=D [T,
i=1
and, hence,
o g { 1‘))1
/1(‘\‘ s . ie’]" ey e ——  — X (24)
) Yo ];V 3151/3

n

For the trigonometric case we now have ¢, - 0; therefore, we redefine the
system (1.3.d) as

¢0(x) I, 452;*1()() == COS ,B,-X, ‘Jszl'(x) == sin B,,;x,
{i=1,2,.,N; n == 2N. (2.5)

Then Egs. (1.5), (1.6), and (2.1) yield

o) = [1 82

consequently,

N
h(x) ==y -+ Y, (y;cos Bix + 8, sin B:x) -+ (BB -+ Bn) 2. (2.6)
i=1
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In practice the numbers 5, are chosen as follows.
(i) Exponential case. We take
Bo=0: Bory =i Po= —i, i=1.2...N; n=2N. (2.7
Then the function /#(x), given by (2.4), reduces to

N
h(x) = 7y = Y (raiae” + yue ) - (DVNDE(28)
i1
The determination of the coefficients v, from the equations /i (x;) == 0
j=0,1...,n is a problem of exponential interpolation of the function
g(x) == (—DY¥Hx/(N!)2, the solution /;(x) of which is known to be [6]

aN 0.2N .
Ex(x) 3y — T7 sinh (59
I (x /ZU ) g(x),  EJfx) — 1‘[ sinh (‘ 5 J:
hence,
_ 1IN aN
h(x) = ((/\lj?) w(x), w(x) = Z gl((\};) — X. (2.9)

We can generalize the choice (2.7) to

By = 0: Pory = if. Poy— —iB, i=1,2...N: B 0. (2.10)

The remainder formula (2.9) is modified accordingly

i oON ’
oy — D8 e = 3 B

CHAR ’ fo- 0 E/:(»\'r(») M
(2.1H
0.2N v
E(x) = sinh | B {———4)|.
00 = L s 8 (5]
(if) Trigonometric case. We take the system (1.3.c), i.e.,
BU - 0’ Bz =0, =1, 2 N: n= 2N b —a <7 21, (2]2)

It can be shown along similar lines as in the previous case that the remainder
becomes

oN S
h(x) = N')2 wix), wix) = Z S;((:,) Y, — X,
(2.13)
0N X,
Si(x) = E sin ( 5 )

Again we can generalize (2.12) to

Bo=10: B, —if. i=1.2....N; B=>0: Bb—a) = 2m (2.14)
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We then obtain for the remainder (2.6)

| FARWES!
N(x) (BV/\/_'_)2 wx), wo(\) Z Al X,

0,28 - . L
Sux) ] sin ‘,8 1\ , Y )I

Hamming [11, pp. 280-283] gives a remainder formula for trigonometric
interpolation of the type (1.3.c) which is valid for equidistant nodes. It can be
shown that the application of Petersson’s formula to systems of the type (1.3.e)
does not lead to analogous simple expressions for the remainder. However,
an expression for the remainder of generalized interpolation including the
type (1.3.¢) (and its hyperbolic analog) has been given by Newbery [12]. The
quantity corresponding to our /i(.x) there 1s

P
Pol-¥) w(x) . e v eoc v

FRTY wix) - [ !' (Cos X - €Oos X;).

with ¢y(v)  sinxor I. 1t follows at once from this and Eq. (1.9) that the

optimal interpolation points on the interval [0, 7] are
v, (2§ D20+ 2). PR R T .

The systems (1.3.e) will not further be treated here.

3. CALCULATION OF OPTIMAL INTERPOLATION PoiNTs

We like to determine the optimal interpolation poinls for exponential
interpolation of the type (2.10) on an arbitrary interval [a, b]. and for
trigonometric interpolation of the type (2.14) on an interval [a. ] with
Bth — a) -~ 2z, For reasons of convenience we wish to perform the compu-
tations on the interval [ —1, 1]. However. the spaces spanned by the systems
corresponding to (2.10) and (2.14) are not invariant with respect to the linear
transformations (1.11); these systems are changed into

; ;
:L eVt e xu““q ().’\ \71’ g A‘\\uf~

11, €os xu, sin ..., cos Noar. sin Noar!, N P ay2.
where u is the variable in the interval [ - I, I]. Therefore, the problem of
determining optimal points on an arbitrary interval can be solved without
foss of generality by regarding 8 and x as parameters (mostly 3 = 1}, and
by solving the same problem on the interval [ 1, 1]: we have 0 -« « =«
in the exponential case and 0 <7 « . = in the trigonometric case.



EXPONENTIAL AND TRIGONOMETRIC INTERPOLATION 363

1t immediately follows from (2.11) and (2.15) (where x and B have been
replaced by 17 and «, respectively) that we have to determine functions

N N
D) - >yt and Du) =y, = Y, (ypcos vku - 3, sin ki)

i N [

that are minimax approximations on [— I, 1] to the function f(u) u. Since
the latter is odd, so are @, and @, : they, consequently, have the forms

N N
D (1) - )Y a;sinh xku: Dy == > by sin sk (3.1)
5

1 Pt
The optimal interpolation points are the zeros of the functions
wo (1) = Pu) — u; w(i) - Dhu) - (3.2)

The (at least) 2N --- 2 extremal points of w,.(u) and w, (i) are 2 = 2 sym-
metrically situated with respect to the origin. So w.(u) and wiu) have
(at least) N — 1 extremal points, and, hence, (at least) N zeros in the interval
(0. 1]. The extremal points are zeros of the functions

N N
w (i) = ~ Z ka, cosh xku - 1; w() = Y kb cos xku o 1. (3.3)
Jo1 Joee1

By the substitutions z = - cosh awrand = = cos aw, respectively, these functions
are transformed into polynomials in z of degree & and, hence, have at most
N zeros in (0, 1]. Consequently, there must be an extremal point at » — |.
Furthermore, w,.(u) and w,(u) have precisely N zeros in (0, 1]; between two
adjacent extreme values these functions are strictly monotonic.

In view of these remarks the minimax approximations (3.1) can be com-
puted effectively by means of Remez’ second algorithm [7]. Let us denote by
et = 12,0, N, the positive zeros of w.(u) and w,(u), respectively, the
extremal points by ¢, .7,,7 = 1.2,..., N | (with éy,; = 7y,, 1), and
the deviations by d, , d, . These quantities, together with the coefficients a, ,
b, . must be calculated from the equations

N
Y apsinh ke, — ¢, = (1) d,, i 120N - 1 (34.a)
h—1
N
a Y kay cosh oku -~ 1+ 0, (3.4.b)
fo=1
N
Y a,sinh xku — u = 0, (3.4.0)
foal

640/8/4-6
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and
N
b, sinoakt, — 1, — (—1yd,. i-=12...N 1 (35.4)
J=1
N
a Y kb, cos aku — 1 == 0, (3.5.b)
k=1
N
Y b, sinaku — u = 0. (3.5.¢)
Jra1

The remainder R,y . ,(u) of the interpolation types under consideration
consists of two factors (see (1.4)). The first, Loy, ([f(£)]. depends on the given
function f(u) and on ~ and is in general unestimable. The second, A,(u) or
h(u), given by (2.11) or (2.15) with 3 and x replaced by « and u, has been
minimized by an appropriate choice of the interpolation points. When
putting

_(—=D¥itd, —d,
© T TGWWIE S N (3o
i.e., e, ! = max  f(u). € - max; hu) . we may say that the accuracy

of optimal exponential or trigonometric interpolation ultimately depends on
e, and ¢, .

Following Nitsche [8] we call ¢, , 1,,¢,.1,.d,.d,, €., € the Chebysher
quantities of our approximation problem. Tables I, If, and III contain
numerical values of these quantities for N == 3 and x == 1, 1. 7. Table 1V

TABLE 1
v=0.5
i é; e, i, /,
0.22399 0.43632 0.22105 0.43143
2 0.62612 0.78392 0.62082 0.77970
0.90213 0.97526 0.89977 0.97459
d, - 016818 < 10~ d, — —0.18090 x 10—*
e, = 0.29898 x 10 e, == 0.32160 x 10~

gives the corresponding quantities for the case of polynomial interpolation.

We denote by p, and p,;. i 1.2,.... N, the positive zeros and extremal

points of 7, (u), which are given by (see (1.9) and (1.10))

pi = sinim/QN -I- 1), p, = cos(N — i + Dw/@N +1), i=1,2,.., N.
(3.7)
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TABLE 11
[ ]
i e; €; f/ 1
1 0.22837 0.44353 0.21662 0.42396
2 0.63378 0.78991 0.61260 0.77300
3 0.90542 0.97618 0.89597 0.97349
d. = 0.96785 < 10 * d; = —-0.12960 < 1073
e, — (.26885 x 10— & = 0.36000 = 10—*
TABLE 111
- ki
i e, 19 i t,
1 0.27780 0.51744 0.16316 0.32589
2 0.70389 0.83933 0.48755 0.64678
3 0.93045 0.98289 0.80000 0.93442
d, = 0.32546 < 10! d; = —1
€. == 0,94038 < 10 ¢ e, — 0.28893 » 104
TABLE 1V
i pi i
i 0.22252 0.43388
2 0.62349 0.78183
3 0.90097 0.97493

d, = 0.15625 » 101
e, — 0.31002 x 10-3

The maxima d, and e, of w(u) and A(u) (see (1.10) and (1.8)) are

d

. D2V
» = 27,

e, = d,J2N + D! .

365

(3.8)

The Chebyshev quantities are functions of «, defined in the ranges (0, o)
and (0, 7). It is seen from (3.1) and (3.2) that a sign changement of « only
causes a sign changement of the coefficients a, , b, . Hence, we can extend the
definition interval of these functions to (— o, o) and [, =] with exception
of the point « = 0. The value « = 0 makes no sense from the interpolatory
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point of view, but we can define formally a Chebyshev quantity for » - 0
as the Jimiting value of that quantity for » -> 0. It now appears from (3.1).
(3.2), (3.4), and (3.5) that the coefficients a, . h, are odd functions of .
while the Chebyshev quantities are even in .

Our approximation problem is equivalent to approximating the function
J(¥)  von the interval [ -, «] by a function of the form Z}‘\.v 1y, sinh ky
or Z‘,.\,Ll v, sin kp. Let us use the same symbols, but marked with g star, for
the Chebyshev quantities and function coeflicients related to the interval
[~ ~ ] His immediately clear from (3.4) and (3.5) that a starred quantity
equals x times the corresponding unstarred quantity. It is known [7] that the
starred quantities depend continuously on x. In the polynomial case we also
have p,* =~ «p, . B, v, but % = a3

The quantities a, . b, . k 1.2..... N.d. . and d, have the following sign
properties.

THEOREM A.
sgn @, - - sgn b, (-1 k (2. N: d. -0,
sgnd, - (—1)*. where sgn denotes the signum function.

Proof.  The quantities ¢; are the positive roots of Eq. (3.4.b), which after
the substitution ¢ = ¢** can be written as

2
N [Naxl’“’“' (N -~ Dan ],»_’:\' i A Lo N
. alz*N Lo NCINJ == (),

This equation has 2V positive roots e**. Hence, by virtue of Descartes’ rule
the sequence of coefficients must have the maximum number of sign
variations, whence it follows that sgn g, = (- 1)*~1. Consequently.

sgn w, (1) = (- )Y for u ey

The last equation (3.4.a) then shows that ¢, - 0.

The proof for the trigonometric case is more complicated. Equation (3.5.b)
can be reduced to a polynomial equation P(r) - Z?_ o xcr® == O by means
of the transformation ¢ = cos aw. The latter equation has N positive roots
cos «f, if v = 7/2. We first show that the theorem is true for x -~ #/2. Using
the relation (see [9, formula 403.3])

szl Cktk =Wk e 2y (k-2 - 1)

cos kx w= Y (—1¥ i el 202 L cogh 2,
-0 S

we find for the coeflicients ¢, the following expressions:

Cnegy = 2N BTN == 2)) by sy — Cnogsl J 000 [N/2], (3.9.2)
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where
/ (N —2j —2D(N — 2/ 1 [~ 1)---(N —=2] i 1)
Cxoas — ]Zl (—1)-t J — 2) - " SRR
AN = 2f = 20 by wgaar s (3.9.b)
and
Cnogjog = 2NN = 27+ D) by oojy — CN72J'+1]’
J=1, 2. [(N —1)2], (3.10.a)
where

i-1 Y [ D Y o (N = D
Cyooin = Y (=) N =2 =204 YN -2j ) (N -2 2)

$==1

PN = 27 0 205 1) by vsiereg - (3.10.b)

In (3.9) and (3.10), if N =— 2j or N == 2j — 1, the expression 0.5, must be
replaced by —1/w; further Zl,]vl = 0. The coefficients ¢, have alternating
signs. Suppose by = 0:thency_s; ™ 0, ¢y ujy1 << 0, by_y <2 0 and, by virtue
of (3.9.a) and (3.10.a),

(N = 2j)by_s; = Cx.yy (N —2j 4 D) by_yisg < Cy oy (301

From (3.9.b) and the first inequality (3.11) we can derive the following chain
of inequalities:

(N = 2)) by 7 Cnooy

[(N — 2] 2NN — 2 - k)
) Z [y -2 ) (N—2j —k — 1) (N —2j 2)]
SLd ik - 2)'% ”*

AN = 2f - 2k) by sy
. [(N e 25 - 2KWN -2 v k= 20N -2+ k | 1) ]

B N—2+k—1)-—(N—-2/-3
' 23("’”/"3 ( 2Nk = 3k A
N = 27 & 2K) bygraan

| [V =2 20 =2 < k= 1= 1) ]
Cy (e b WAk 2 2) N 2k

2, 7Dk — D%

KAN = 2j+k — 1) AN = 2]+ YN — 2j = 2kY by 4,0

NN -1 (N—j 1) (N )
- Gohror T Mew (j ) Nby = 0,

Joe= 00 [N2L (3.12)
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In the same way it follows from (3.10.b) and the second inequality
(3.11) that

. N1
(N =2/ = 1) bngja << Cnonjyq = (/ ] ) by <0,

J= L 20 [NV - D2] (3.3)

The inequalities (3.12) and (3.13) are reversed if by <= 0. It follows that the
coeflicients b, have alternating signs. Suppose now N even and b, >~ 0. Then,
from (3.9.a) and (3.9.b), ¢, = —(1/o + C,y) .~ 0; this is not possible since,
by (3.12), also C, > 0. Suppose next N odd and by “< 0; then by_, ~- 0 and
¢, >> 0 which, again, is impossible since by virtue of (3.13) (with the inequality
sign reversed), C, = 0. Hence, sgnb, = (-~ D¥*' and, consequently,
sgn b, = {(— 1)L,

Returning to the general case that 0 <« « « 7, it is impossible that a
coefficient b, equals zero for a certain value of «; indeed, the system
{1, cos au,.... cos({ - 1) o, cos(! - 1) au,..., cos Nau} is a Haar system on
the interval (0, 7] and, hence, every function of the form }:(,]f\, ¢, cos aku |
has at most N — | positive zeros, contradicting the fact that the function
(3.5.b) has N positive zeros. Since the coefficients b, are continuous functions
of «x (except perhaps in « = 0), they never change sign.

Finally, in order to determine the sign of ¢, we observe that the substitution
v == cos «u transforms the w-interval [0, 1] into the ec-interval [cos x, 1],
whereby v = 0 corresponds with v = 1 and « = | with ¢ =: cos x. For the
roots v; = cos «f, of the transformed equation P(¢) -= 0 we have v, - v, .
Hence, {P(zf)j,.;;,,1 is posttive if by > 0 and negative if b, = 0. This means
further that (see (3.5.a)), for u < 1, . w(u) increases if Nisodd,i.e., —d, — 0.
and decreases if N is even, i.e., —d, == 0. This completes the proof of the
theorem.

Theorem A allows us to compare the graphs of the error functions w,(u),
wiu) with the corresponding error function 7T,.,,(«) for the case of poly-
nomial interpolation. The differences are

sgnw,/(0) = -1, sgnow(l) = (~— 1)V 1
sgn w,(0) = (— VY sgn () = —1;
sgn Tina(0) = (—1)%  sgn Tyyoa(l) = 1.

We then see from (2.11) and (2.15) that the signs of /2,/(0), #,'(0), and T, ,(0)
are identical, just like the signs of A.(1), A4,(1), and T,y (I).
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4. BEHAVIOR OF CHEBYSHEV QUANTITIES FOR SMALL VALUES OF
THEOREM B.
l‘in(} e; = lj{r(} t, = p;, lmg e; = ln(1) = P, i=12,..., N,
where p, and p, are given by (3.7); lim,,, d, = lim_,d, = 0.

Proof. We first consider the exponential case. We expand the function
w.(u) in a Maclaurin series, to give

a3 N
wo(u) = o Z kay, — u + (L;"L Y Kay, -
(au)2N+1 N Nt
+(2NJ 1)|Zk @i - (4.1)

When putting formally

N o
X 2 /\'2”—‘]‘]1: = Z A‘Z})*H,Qmwzms P = O: l-.‘ 2s (42)

k=1 m=0
(valid for small values of «) and

»

4 A’m H1.20— Zm
Zopalu) = R 7aian p=1,2,.., (4.3)
291l ZO 2m + !

we can rewrite (4.1) as

wu) = (Arg — Du -+ Z Zapalu) 30 (4.4)

»=1

We also have for the derivative

w () = Ay — 1+ Z Gopialu) o0 (4.5)

p=1

Now we introduce the following formal series for extremal points and zeros,
valid for small values of a:

Ik

x
L Cﬂ_{‘gmazml e; = C(» . ;m12"' (46)

W=t}
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Then

g‘;)' —]{(;1') ’ g‘_;pi'l((‘w,zll { (Z (: i, )m m)gé‘nll((‘r./,l)) '

S -1

\ 20—
) (j}) T (Z] C N ’)/ m) f])}j)]((—n’.,"(l). {47)

Putting this into (4.5) yields

W {(2) 0 - ’\1,() - Z Gén-nl(cw,/\o) X4 (4.8)

Pl
where G, is 4 polynomial of degree 2p. For the lower degree polynomials
Gy, G5 we have

G3/(C'./.0) g:_:,’((j/,,;,”); Gsl((;w,f.o) - gs'(C““,) DG (G )

Since, from (4.8), Gy, _(C..,) 0, I, 2., N, all p, and since the
polynomials g;,.,(u) are even and, hence, have at most p positive zeros,
we can conclude that

A I gslu) - gslu) T Gaval) O (4.9)

It follows further from (4.4), (4.7), and (4.9) that

wAé,) (1) Z Gopi Gy ) 2P, i L2, 0N 410)

where G, 1s & polynomial of degree 2p - I. In particular we have

G:z..\rl(Cw,z.u) }Iz,\'w(cgnu)i 4.11.a)
(jze\":l(ér-‘i.t)) gan. ((_1 L,()) i 6/;i,:g-’_'}\’ﬂ:—l(é“w.i,u)- (4‘] l~b)

From (4.10) we see that ¢, == O(x*"), and we can put formally

‘o

d, =) o, (4.12)

=N

Since (Theorem A) d, ~ 0, we know that ¢, - 0.

It follows from (4. 4) (4.9), and (4.12) that the extremal points -¢,, - 1,
in the limit ~ == 0, are zeros of the polynomials ¢4y — goy.1(2) and
(I — u®) gy5, 1(u). The polynomial gy, (1) thus satisfies the differential
equation

(I — 1) ginn(u) = 2N 1 Dlgiy — ginaw)],



EXPONENTIAL AND TRIGONOMETRIC INTERPOLATION 371
the solution of which is known [7] to be proportional to the Chebyshev
polynomial of the first kind T,y..,(&). More precisely we have

Sonva(t) = (— D oy Ton (), (4.13)

since sgn w,(1) = (=1 and T,y (1) = 1. Now the theorem (for the
exponential case) follows at once from (4.6), (4.11.a). and (4.13).

We can repeat the same calculations for the trigonometric case. Starting
from the Maclaurin series for w (u), and putting

N *
R Z /\»211:1/7/" — Z /"L‘J)z«l,jm:‘zm, P 0. ]’ 2“”’
Aol

=0

i

By ) — N (o ym Brmiien e e y = 1, 2.
2w 1 ) m}_,() / (2}” o 1)' / 5 Ao

b7 kA
R C 2 - 2
l'[ - Z Cl./,'_’m‘\ H rz' ) Z Cf,i,iru“ 5

sy I

it is easy to show that ¢, == O(a®V); hence, we put formally
d, = Z Fy 20, (4.14)
N

where, by Theorem A, sgn r,5 = (-—1)¥. Further, it is readily seen that
hayaq(u) = (DY ry Ton (1), (4.15)

which proves the theorem for the trigonometric case.
We now wish to calculate lim,_, ¢, and lim, ., €, . Therefore, we need
to know ¢,, and r,, . The calculation is based on the following lemma.

LemMa a.  We have
SEN Agn npir,e (- DML SEN Aynyopi1e - (1Y,
p=2~012..
SEN Uon oy == SEN Uan s b (1Nt
SN Waniopit,0 g0 Wan 2p.1,2 5

Jurther we have
Aans1i0 = Man-1.0 = (= DV HNDE (4.16.a)
Maxian — fansan — (— DN N2 (z kZ): (4.16.b)
= )

N
/\‘_’N—~l.‘_’ = (Z /"2) /\2N—1,2; HaNia,2 (Z kz) pon-12- (4.16.0)
-1 [

==
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Proof. We consider the set of infinitely many linear equations (4.2) with
the unknowns «ka, = ka,*, k == 1,2,... N. We define V"V and V¥ to
be

1ol P 1 | |
1222 e N2 12 22 L. N2
V&{Vfl) — . e : ng - . .
[2N—3 D2N-4 L NN [2N-4 Q2N-1 ... N2ENd
[2N-2 J2N-2 ... N2 [2N 20 Q2N:2p L. AfENiRp |

These are determinants of Vandermonde type and, hence. have a positive
value. It is not difficult to show the relation

N
Vf\{\') . (Z /\'2) Vf\;v 1). (4.[7)
=1

From the first N equations (4.2) and from (4.9) we get

* NN E Vi(VAflg) VI(VNSZ) A 2 4
Nay* = (=DM HN - DI | R Ay - 0, (418)
N N

The second, thirth,..., Nth, and (N .= p -} I)th equations (4.2) together give

1 Vz(vN 2)

* N1

Naf\’ - N2 '7(1\],( 1) )\:ZN< 2p41.9
N

L-(Nf'z) V(N+p—1)

+ 'ng}:;]{:"ii' Manrapine — ”‘(1%:751’)' /\-zmq,z] ! -+ O(a). (4.19)
i Vi |

From (4.18) and (4.19) we infer

V}(VNQ 1)

— N-1 2 .

Aonsopino = (= DN N i

|78 )
N
21 (Ncp-1) (N-2) AN p—1)
A ﬁ,_;_i\’., Vv L Va1 _]a
2N+2p 11,2 7 }/ (N--2) IN-T) NEY (Ntp=1) 2N-1,2 »
N-1 N N

where sgn Ay, — (- 1)Y. From this and Eq. (4.17) the lemma follows for
the A-quantities. By repeating the same calculations, the lemma appears also
to be true for the p-quantities (however, observe that sgn pyn_;, = (— 1) 1).

THEOREM C.

l}n& €, ~= l.iﬂ)] € = (—1)Nle, | where €, is given by (3.8).
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Proof. Equating the coefficients of #*¥+1 in both sides of Eqgs. (4.13) and
(4.15) gives

A ,
2N+1,0 — (__1)N+1 q2N22N . HoNt1,0 _ —r2N22N»

2N + 1) TN+

On account of (4.16) we obtain

(N1)?
Gon = (— DV ryy = WT),

(and, hence, hyn. . (t) = (— 1) gon,1fu)). The theorem then follows from
(3.6), (4.12), and (4.14).

In principle we can calculate all quantities Ayyii0p» Gop»> Crsiam . and
C, ;.on from the infinite set of equations (4.2), from (4.10) and (4.12), and
using the fact that we already know the coeflicients of g,y (). The same is
true for the quantities related to the trigonometric case. In particular,
knowledge of guy.s and ryy.s, C,;,and C,,,, C,;, and C,;, informs us
about the increasing or decreasing behavior (for small values of «) of the
quantities €, , ¢, and I, , ¢; and ¢, , respectively. Results are established in the
next two theorems.

THEOREM D.  We have

6#,2’,2 = E%M_(@) > Coig = ~— g?NJ %([27‘) 5 (4.20)
gzzv+1( pi) Sont 1( p'f)
6!,1‘,2 = ‘6e,i,z ; Ct,i,z = —‘Cu,f.z- (4~21)

Proof. From (4.8), (4.9), and Theorem B we get

G2,N-‘—3( ﬁi) = 0 = géN+3(ﬁf) + C&e,i.‘.’£‘§N+1( lf’z:k)-

Since gon.1( P;) 5= 0 (see (4.13)), the first equation (4.20) is proved. The
second equation (4.20) can be derived in an analogous manner, starting from
the equation w,(e;) = 0, and using (4.11).

Now it follows from the calculation procedure of the A- and p-quantities
that | A, ;| = | w;,; |, all i, j. Hence, we can infer from Lemma a and the
definition of /,5 (1) that gon.a(t) = (— DV I,y o(4). Equations (4.21) are
immediate consequences of this.

THEOREM E.

Gonse < 0; Fonye = (— DY Ganya, 1.8, SEN Foy .y = SEN Foy .
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Proof. Consider first the exponential case. it follows from (4.10), (4.11.b),
(4.12), and (4.13) that

GL’“\#S( [31) ) gz.\'a:;( ﬁ[) - ( " I)( (Igv\‘ P I - l, 2 ..... /V : l

where py,; = 1. On account of the definition (4.3) of g, ., we then have

_ o Agan Agn VI '
)\l aNa2 Pi T %;‘7:\ P/'; oo (2?0’ Wﬁl;ﬁ)i P?A ! ("’l) ! on 2
Aovi1s  —ann Aonizo  monew :
= —— e T == N X 22
L RPN L2l N L (422)

The quantities in the right members of these equations are known from

Lemma a. When considering Au, i anvesn o/(2m -4 Dm0 1., N — 1.
and ¢,y as unknowns, the determinant D of the system (4.22) is a sum of
determinants of Vandermonde type: it is readily seen that

sgn D = (— 1)V, (4.23)

]71 ﬁl:; pizN—l ﬁi’l\z 1 E
y ) eva ' ' '
PV DN T Dby P R
| ] ] |
= =3 SUN L 2N3
P P p 15
. Aif\zzva 3.0 : ) ) 'v
SNy pat o TN
| [ | 1
By virtue of a relation similar to (4.17) we have
Lop® o P e
. . e . ".] _ ) - .
I ]—7N [—)‘i{v 2 ‘E;)\}V” /Z‘l Pu | ﬁvi ﬁ}g\;v 2 [3_\
1 { | I I I I

Denoting the determinant on the left side by P, we obtain for ¢, ..

- 5 \_’ .2 ! z‘ ’\)\ 3.0
dunee (117 )‘Wﬁﬁ“i ‘(ﬁl'fﬂ*”aﬂ-<4ﬂ’

|
-+
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In order to calculate the expression between brackets we must calculate first
Asy 1 0OF, by Eq. (4.16.b), Asn_ 1. We have [7]

al , AN 1 AN kb
; . . ZN-2L 1 o (NN 2 =T T
Ton lu) /,E t)(;,ll . ¢ (— 12 AN ki ( )

Hence, from (4.13). (4.3), and the expression for ¢,y we obtain, putting k = |,

)\DJ-’ cx (— )N JN!)?W
(2N - D! 22N
Consequently, by (4.16.b),
,/\2N+1,2 W X N 77L‘)-’ -
av 0D (‘LZI/‘ ) OGN NI N (4.26)

We also infer from (4.25) that

i Sy QN Do 2N -

~ T TGN T e, T 2

and, hence, that
N+1 _ 2N . 3
Y PP = 2" . (4.27)
71

Putting (4.26) and (4.27) into (4.24) yields

NN p (V1)
ey = (— DN 1') ) = a5 v -
fan- ) (Ep (/}:1 ) D 2 2NGN . 2)

It then follows from (4.23) that gy, < 0.

The theorem is now easily proved for the trigonometric case, too. Instead of
(4.22) we now have a system with unknowns (— 1)" to,, . 1 oy -am2/(2m + 1)1,
nr =0, 1,..., N — 1. and ryn.,, with the same determinant D. The right
members are

_yNir Mengae cen-n o (yNea HeNyso ZaNeg
AN TR Y DT Gy TP
AoNot o  —on A, .
o [ fevine cever | Aavaso  cenes
=D [(ZN — il TN ol ]
(SiNCe phun i = Aav g0 and fonviye = —Asyipe)- Hence, it appears from

(4.24) that ron.o = (— DV U gon s
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5. BEHAVIOR OF CHEBYSHEV QUANTITIES FOR LARGE VALUES OF «x

We can summarize the results of this section in the following theorem.

TurOREM F.
! dt Ia::rr - ]s : € ia:rr > €p 5
Iimd, = lime; = lime, = 1, i=1,2,.,N; lime, = 0,
Q- ey =W x>0

Proof. We consider first the trigonometric case, being the simplest one.
If « == o, it follows at once from (3.5.a) that d,|,., = (--1)¥. A more
detailed calculation shows that, for « close to =,

dy = (—1)N /zl — (7 — a) Z (— 1)1 kB, + Of(7m — a)z]{,

where B, = b, ,_. . By virtue of Theorem A the expression 2}1—1 (-1 B,
is positive; hence, | d, | increases towards the limiting value |. For ¢, we have
€ by = (— DN UY@EVND 1t is not difficult to show that (#YN!)? <
22VOQN + )Y hence, | € |, - €,

Let us now turn to the exponential case. We first consider Eq. (3.4.b),
written in exponential form, and express the coeflicients ka, as functions of
the roots exp(-£¢,*) by means of the elementary symmetrical functions of the
roots (see [6]). These can be written compactly as follows:

(N —2f)an_s;

1N 20 |

s S ([l

L) L i1<j2<4- =1
Jo=1, 2,00 (N — 1D)2],
(N — 2/ — 1 AN-2j—1

PN 1. 1.N 2l 1 O
= a2 a3 (] eosner )

=0 ’ fy<igtetigy g Vi1

=0, Lol (N - 2)2],

!

N/2 ¢ I.N 21 L
SN2 21 3 1] 5% ’
, Nay ,;) ((N/2 - [) 2 N I/Zm (71”[1 cosh (i"’,)S’ N even.
N ‘“{ - (N-1)/2 | 1.N 2041
_ WON =21 g o )
N Z:» (((N =12~ /') ? il-\zz«:Z‘ainJ (Iylu cosh L’:’”,)S’

N odd.
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From these formulas we can detect the behavior of the a, for large values of «.
Replacing cosh ¢;° by exp(E?;)/2 we obtain

o :
ka,* ~ (—1)=12 Z exp (-_ Z Ej*) k== 1,2,.., N. (5.1
Doing the same replacements in the equation w,’'(¢;) = 0 we get

N
Z (kay*/2yee  ~ 1,  j=1,2,....N.

or, on account of (5.1),

N s 1N R - '
> ’ (-t Yy exp[z (&,* — E,?;)Jg ~ 1, je= 12,0, N (52
L=1 11<i2<---<ik =1 !

If j -1, Eq. (5.2) is satisfied for « = oo since the last term of the left
member is equal to I, while all other terms are 0, their exponents being
negative. If j 2> 2, then the left member of (5.2) will have a finite value only if

hm é = 11m = 1im ey = L, L = 1. (5.3)
For the equalities w.(¢;) = (— 1) d,, j=1,2,...., N we have
N
R N A R W Y

k=1

or, on account of (5.1),

N (71)/1\ 1.N P8 . . ( . ,- )
Z - /‘ Z eXpl:Z (ej - eim)}' ~ € Jf(*l)jd()"
Je1 }[1<,’2<...,.\,;k = ’

J=1,2,.,N (54

Again, for j= 1, the limiting value of the left member is 1; hence,
lim,_, ,a’, = lim,_,. &, = L. If we apply (5.1) to the equation w,(1) =
(— DV d,, we obtain

—1 al (*"1)“15 o Jo : N+1 <
Y ‘77\'“7—1 Y exp[ Z (x — e m)] + (=", . (5.5)

il<i2<'“<ik m=1
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Since the right member remains finite, the same is true for the left member;
there the leading term is

(xN) = 1)V Texp

\
v
’

(’,;)i.

1

For this to be finite we must have lim,_, ¢, -~ |, t.e.. L - |.Since d,. remains
finite, lim, ., €, - 0. This completes the proof of the theorem.
From (5.5) we can deduce further that

¢; ~ 1 - E, logajx, i 1.2, N,
where the constants E, are such that E, - E,., 0. For the zeros e, similar
asymptotic expansions hold. Taking ;= 1 in (54) we obtain that
lim ., «(e; - d,) = 1. hence,

d.~1 - Elog «/v 1w

This shows that €, | decreases towards the limiting value 0.

6. GLOBAL BEHAVIOR OF CHEBYSHEV QUANTITIES

In this section primes denote differentiation with respect 1o . We first
demonstrate & monotonicity property of Chebyshev quantities related to the
interval [ - x. ).

THurorem G.  The quantities d.*, d, 7, ¢e,*. 1,7, ¢,*, t,*. i 1, 2...N
are monotonically increasing functions of x.

Proof. We give the proof for the exponential case, the other case being
completely similar. Consider two values ~, and x, of x, %y, = «, . The function

N
Y [Kap*(xg) — @, ()] sinh kv (K D)y, (6.1)

fo=1

where K =+ d, *(x,)/d, *(ny), 18 defined for all values of « and has at least N
positive zeros, one in each interval (2,%(~), e 4(x)]. 7 = 1,2..... N, with
ek, = « If K should be equal to 1, a linear combination of the N functions
sinh ky, k = 1,2,..., N, should have at least N positive zeros, which 1s
impossible since the system of these functions satisfies the Haar condition
on any interval (0, «]. Since d,* ',_, -= 0 (Theorem B), the theorem is proved
for d.*.
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If ¢,%(ey) = 2,*(p), then there should lie a zero of the function (6.1) in
the interval (0, &,*(«,)], too. This is impossible since then this function should
have at least 2N -+ 3 zeros, while it is clear that it can have at most 2N -+ |
zeros. Suppose now there is a4 j, j = 1, such that ¢*(x,) > &;%(x) and
5 a(0n) < &5(ay). The interval (¢,%(x), €51(2)] then contains at least three
zeros, which brings the total number of positive zeros of (6.1) up to at least
N -- 2, again impossible. This proves the theorem for the extremal points é,*
and, by using the same reasoning, also for the zeros e;*.

We next show some monotonicity properties of the a,* and b, coefficients.

THEOREM H. The coefficients ' a,* | are monotonically decreasing functions
of x, ie..sgna;’ = (— ). The coefficients ' b,* - are monotonically increasing
Sunctions of «, i.e., sgn b}’ == (— 1)F+L

Proof. 1t follows from (3.4), (3.5) that

N
Y g sinh ke — o = (—1id* Q= 1,2 N+ L (6.2.0)
hi=1

N

Y byt sinkix 0% - (= 1) d)¥, Pi=1,2,.,N =1, (6.2.b)

k=1

"

where ¢}, = 7y.1 — x. Differentiation of (6.2) with respect to « yields

N

Y ai’sinh ke, = (~1)d}, i—=1,2,.... N,
ESEN

(6.3.a)
N N
Y asinhka - Y ka, " cosh ko — | = (——1)¥""d}7,
Jre fe=l
and
N 5 .
Y b sinki,” = (—1)'dY, i==1,2,.., N,
h=1
(6.3.b)

N N
Y b sinka b Y kb ¥ cos ko — 1= (— 1)V
k=1 Fomal

It appears from these equations that the functions

N

N
fdy) =3 a sinhky,  fly) = b sinky

k=1 k=1

640/8/4-7
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have the largest possible number of positive zeros, i.e., N - |. Since d;” .~ 0
(Theorem G), it follows that sgn a¥/ = (--1)¥. Furthermore, by applying
the same reasoning as in the proof of Theorem A. the ¢}’ must differ from
zero and have alternating signs. Hence, sgna)’ = (—1)*. For the trigo-
nometric case we have (Theorem G) sgnd} = (- 1), and., hence,
sgn /(%) = (—1)"=1; this means that sgn b} = (- 1)¥<L which further
implies that sgn A7 — (—1)* 1,

THE()RE\’I [ f/ze quantmes Z,I,lka,_.* . ! Z, 1ka,cosh ko - 1.
‘Z, 1 kb * ‘ and | Z, 1 kb ¥ cos ko l i are monotonically increasing
/uncnons of a, ie., Z, L kal’ <0, sgn Zir 1ka ¥ cosh ka - 1) = (- 1)V- 1,
sgn S kb= (— DM, and ( (XN kb, * cosky — 1) -

Proof. Since from (6. 3) sgh f, (el “y .« - 1 and sgn N U DA i
immediately follows that 7 , ka}’ < O and sgn 54 kb}" (- 1)¥*1. Con-
sider now the functions

N
ZAy) = [(y)+ )Y ka,*coshk — 1, (6.4.2)
Jew:1
N
dZ(v)idy = Z ka;' cosh ky + Y Kk'a,*sinh ky. (6.4.b)
=1 Ll

The first can have at most 2N real zeros, the second at most 2N - |. We have

F(eF) - (- DT i L

o

SN

with &5 ; = v. Since &' - 0 and sgn(X;_, ka,* cosh ko — 1) = (=)™ 1,
F.(r) has at least N positive zeros and, since F,(&,*) = -.#,(—¢,*) and
Z?;l ka,* — 1 -0, also at least N negative zeros. Hence, it is impossible
that dF(x)/dy = (Sp_y ka,* cosh kx ~ 1) = 0.and ¥y, ka,* cosh ka - 1
is a monotonic function of «. It now follows from (4.2) and (4.9) that, for
small values of «, this function is O(«*") and, hence, has the same sign as its
derivative. This is consequently true for all values of o. Exactly the same
reasoning applies for the quantity Z;Ll kb,* cos ko — 1.

We now proceed with monotonicity properties of Chebyshev quantities
related to the interval [1, 1]. These are based on two lemmas.

LEMMA b. [If oy and x, are two values of x satisfying the condition

[(N — D)/N}as < g < x, (6.5)
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then the functions

N N
Fiu) = Y ka,*(x)) cosh yku — Y kap*(x,) cosh ki, (6.6.a)
Fe=1 =

=t
N N
Fu) = Y kby*(ag) cos wku — 3 kb *(xy) cos vk, (6.6.b)
=1 fr=-1

can have at most 2N real zeros (of which N positive).

Proof. Suppose N even, and assume that F,(u) has more than 2V real
zeros. When rewriting F,(u) as

F.() = L ™" Fi(u),
where
N . AN’ )
Fiu) = a, (o) + a7 () eI L Z I(als*(mz)[e(kvl)ul'l + et "
Jees2

N
B g —ay) —(leayt
o z ka,f(a.z)[e(”’- v, (oo Lal)u]’
=1

the derivative of the latter function consequently has at least 2N real zeros.
When putting

dF (w)/du = e **"Fy(u),

we further infer that

N
dFou)idu = Y (k* — 17) vy ha, (o) Dy
o2

N
o Z ('/\'21\22 o O‘]:2) /(ak:f(wg)[e(kaﬁal)u - (;(Auz—al) u]
[ |

has at least 2N — 1 real zeros. In the expression for dF,(u)/du the coefficient
ay;*(«y) no more appears. By proceeding this reasoning we can successively

eliminate a,*(x,), as*(x;),.... @ 1{2y), and find a function
1Fx M, ; N ‘
f.i\,(i) . Z 5 rl [k_ . (2’” o 1)2] OLlNkak>0<(o‘v1)[e(k+l\——l)alu -+ ()A(L~Nr1)ylu]g
du Aeven (mﬁl 5
N (N/2 \

o Z \H [k2d22 o (an o 1)2 ;1‘12] kak*((Xz)[e(kaﬁ—(N‘-l)al)u = e—(lcaz—(N—l)xl)u]g,
b1 Ume=1
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which must have at least ¥ - | real zeros. Next we successively eliminate
a,* (), ay*(x,)...., ay*(«,), starting from

dFy(u)/du = ¢ HN-Daep ().

We finally arrive at a function

A/.-
dFn)fdu = ) H — 2m — 1E] N H [A2v® — (2m)? ) kay, ()
keven m 1 =1

. [()(]\'Z\I'L[V[XE)'U/ N e~(/;a|-—Na2)u]/
\

’\

©

2 [h2002 — (2o — 1) o] 2,
odd \msfl
N2 ’
" II [/\2 . (2”7)2] kak*(az)[e(/.'%w\’)a:u -0 (I;,gv)uzu](’ 6.7)
m=1

which must have at least one real zero.

Consider the first sum in (6.7). The first product (with k even) contains /2
positive and (N - k)/2 negative factors; the second product contains, by
virtue of condition (6.5), (k — 2)/2 positive and (N -- k - 2)/2 negative fac-
tors. The sign of this first sum consequently is [(— [)Y~*" ' sgn a;,*],even = + 1.
Consider next the second sum in (6.7). The first product (with & odd) has,
by virtue of condition (6.5), (k -+ 1)/2 positive and (N - & - 1)/2 negative
factors; the second product has (k -~ 1)/2 positive and (N — k - 1)/2 negative
factors. Hence, the sign of this second sum is [(— 1) ** sgn a,*],0da - 1.
The conclusion is that all terms in (6.7) have the same (positive) sign for all
values of u, which contradicts the fact that dF,,/du has at least one real zero.
Hence, the lemma is proved for the function F,(u) and for even N. A com-
pletely analogous proof holds for odd N (we then eliminate a,*(«,).
a3 ¥ () y A F(0q), as* (), ag* ()., afy (%),

By considering v as a complex variable and by substituting e*:* for z in
(6.6.a), we obtain a function of the form lz=%g(z), with

N N
g(z) = Y ka (o) N 2Ny N g M) (2N 2N (6.8)
o1

Jo=1

We have proved that the function g(z) has at most 2 real zeros. Observe that
this is also true for functions of the forms (6.6.a) and (6.8) with arbitrary
coefficients ¢, , , ¢;.» . k = 1,2...., N, provided the ¢, ; have alternating signs
and sgn ¢, , == sgn ¢; , . Since the function (6.6.b) reduces to the form (6.8)
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{apart from a factor z—V/2) after the substitution ™2 = z (with ay | u | = ),
and since sgn b, * = sgn a,*, the lemma is also true for F(u).

LEMMA ¢ [f oy, x, satisfy condition (6.5), then there exists a constant C,
0 = C <. 1. such that for each constant K, | = K == C. the functions

N N
Gou) = Y aplng) sinh agku — K Y ay(ay) sinh apky +— (K — D, (6.9.a)

k-1 o1

N N
Gu) = Y b(ay) sin gk — K Y by} sin xpku = (K — D, (6.9.b)
h=1 A

- 1

N N ;
dG(du = Y ka,*(x,) cosh aphu — | — K(Z ka,*(x,) cosh apku — l),
Fe=1

L1

(6.10.a)

N N
dG (w)jdu = Y kb *(oy) cos ke — 1 — K(Z kb *(x) cos xoku — 1),
Fe==1 =1

{(6.10.b)

have at most N positive zeros.

Proof. We choose two values «; and «, close enough together such that
condition (6.5) is satisfied. Then, since Zill ka,* — 1 is a negative mono-
tonically decreasing function of « (Theorem 1), there exists a constant C, .
0 < C, =2 1. such that for each constant K; , | > K; = C, .

N N :
4G (O)edu = Y kay*(m) — 1 — Kl( ka, () — 1) 0. (6.11)
L=

k=1 A

By virtue of Theorem I and for o, and o, close enough together there also
exists a constant C,, 0 << C, < I, such that for each constant K.
1 = K, = C,.

N \ /N \

sgn [( Y kay*(xy) cosh kay — 1) — K, ( Z ka,*(o) cosh by, — 1)] = (— 1)V
=1 \ s

] (6.12)

Both inequalities (6.11) and (6.12) are satisfied for constants K such that
1 2 K 2> max(K;, K,). For such a constant the function (6.10.a) cannot
have N =- 2 positive zeros; otherwise its derivative should have N + 2
nonnegative zeros (one of them being v = 0), and its second derivative,
which is a function of the type (6.6.a) (the coefficients of which also have
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alternating signs), N - 1 positive zeros, which is impossible by virtue of
Lemma b. This shows that the function (6.10.a) has at most N positive zeros.
A similar proof holds for the function (6.10.b). Consequently, G () and G (1)

have at most 2V -+ 1 real zeros, and, hence. at most N positive zeros.

THEOREM J. . and d, " are monotonically increasing functions of .

Proof. Suppose there exist two values v, and .. vy v .osuch that
d.(x;) = dA~.). Then the function

N N
Hiu) == ) aoq) sinh vku 5 a(ay) sinh ki
=1 A |
has at feast one zero in each interval (¢ 4x), ¢, ()] ¢ o208 with

¢y, — |. Furthermore, by virtue of Theorem I, there also lies at least one
zero in (0. &(~;)]. This implies that H .(u) has at least N ¢ | positive zeros.
By Lemma ¢ this is impossible since (i) G u) . Hence, d. is a
monotonic function of ~. A similar reasoning shows that this is also true
for ,. The fact that ¢, -0 and d/ 0 for small values of v (see

Eqgs. (4.12) and (4.14)) completes the proof of the theorem.

THEOREM K. The quantities ¢, . e, are monotonically increasing [unctions
of ~; the quantities 1, , t, are monotonically decreasing functions of .

Proof. Suppose there exist two values v, , . v, and an index §
such that
eg) < Cilxy) e () 65 y).

Consider the function (6.9.a), with K - {x)/d.(x,). For y chosen closc
enough 1o «, (which is always possible), K satisfies the condition of Lemma c.
Then the function (6.9.a) has at least three zeros in the interval (6,(x,).7, . (1)].
while in each other interval (¢,(x,). &, 1(x,)] there is at least one zero. There-
fore, this function has at least N -+ 2 positive zeros, in contradiction with
Lemma c. In an analogous way we can show thate, , I, . and ¢, are monotone
in «. Since lim,.., &, == lim,.., ¢, == | (Theorem F), the ¢, and ¢, are increasing

functions of ~. This implies that (Theorem D) C,.,, -0, C,., -0, and
that C,,, - 0, C,,, = 0, which reveals that i, and r, are decreasing
functions of .

It may be remarked here that Knight and Newbery [10] conjecture analog
monotonicity properties for integration nodes appearing in quadrature rules
based on exponential and trigonometric interpolation.

THEOREM L. <. is a monotonically decreasing function of x. € is a

el

monotonically increasing function of ~.
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Proof.  Suppose there are two values «; and «,., v < a,, such that
e{v)  elx). Then ai¥d(x;) == o%d.(x,). Consider again the function
(6.9.a). with K = (x,/%)*"; K satisfies the condition of Lemma ¢ if «, is
chosen close enough to «, . This function has at least one zero in each interval
(Cxy), @;0(0)] i =1,2...., N— 1, and at least two in (€y(y), 1]. This
leads to the contradiction that G.(x) should have at least N -+ 1 positive
zeros. Hence. €, is monotonic. Since ¢,v,» <2 0 (Theorem E), €, is
decreasing for small values of x. Consequently this is true for all «.

In a similar way we can show that €, is monotone. Here, how-
ever, there should be at least one zero of the function (6.7.b) in
each interval (T{aq), T (x)). 7 — 0, 1,..., Nowith f, = Oand 7., — 1. Since
sgn r,y., - sgnryy (Theorem E), 1€, increases for small values of .
Consequently, this is true for all «.

7. CONCLUDING REMARKS

The results of the last three sections admit the following conclusions:

{i) lIgnoring the unestimable factor L,y [f(€)]in the remainders of the
interpolation formulas under consideration, we may say that the exponential
interpolation type is always “better” than the polynomial type, while the
trigonometric interpolation type is always “worse” (Theorems C and L).

(1) The inequalities 7, <= p, << e,, i — 1,2,.., N, hold for all « =0
{Theorems B and K): this means that the optimal points for the exponential
interpolation type have a tendency of being located near the end points of the
interpolation interval, while the optimal points for the trigonometric inter-
polation type have a tendency of lying near the midpoint of that interval.

In view of these conclusions it might sometimes be possible to decide what
interpolation type is most appropriate to a given table of data {x, . f(x))},
i 0. 1.1, to be interpolated.
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